
Chapter 15
Group Cognition and Collaborative AI

Janin Koch and Antti Oulasvirta

Abstract Significant advances in artificial intelligence suggest that we will be using
intelligent agents on a regular basis in the near future. This chapter discusses group
cognition as a principle for designing collaborative AI. Group cognition is the ability
to relate to other group members’ decisions, abilities, and beliefs. It thereby allows
participants to adapt their understanding and actions to reach common objectives.
Hence, it underpins collaboration. We review two concepts in the context of group
cognition that could inform the development of AI and automation in pursuit of
natural collaboration with humans: conversational grounding and theory of mind.
These concepts are somewhat different from those already discussed in AI research.
We outline some new implications for collaborative AI, aimed at extending skills
and solution spaces and at improving joint cognitive and creative capacity.

15.1 Introduction

The word ‘collaboration’ is derived from the Latin col- (‘together’) and laborare (‘to
work’). The idea of a machine that collaborates with humans has fired the imagina-
tion of computer scientists and engineers for decades. Already J.R. Licklider wrote
about machines and humans operating on equal footing and being able to ‘perform
intellectual operations much more effectively than a man alone’ [60].

If there is a shared tenet among the visionaries, it is that the more complex the
activities become – consider, for example, planning, decision-making, idea genera-
tion, creativity, or problem-solving – the more beneficial collaboration is. However,
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although collaboration has received attention from research on automation, robotics,
Artificial Intelligence (AI), and Human-Computer Interaction (HCI), it can be safely
said that most technology is not yet collaborative in the strong sense of the term.
Humans are mainly in a commanding role or probed for feedback, rather than parties
to a mutually beneficial partnership. There is much that could be done to better use
human abilities in computational processes, and vice versa.

The topic of this chapter is group cognition: the ability to bring about a common
understanding among agents; relate to other agents’ decisions, abilities, and beliefs;
and adapt one’s own understanding toward a common objective [82]. This goes
beyond the common notion of a computer ‘understanding’ human intents and actions,
and highlights the necessity of contextual awareness, the ability of communicating
reasoning behind actions to enable valuable contributions [51]. This, we argue, would
result in human–machine collaboration that not only is more efficient but also is more
equal and trustworthy.

We find group cognition particularly promising for re-envisioning what AI might
need to achieve for collaboration, because itmesheswith a strong sense of the concept
of collaboration. Group cognition emerges in interaction when the group members
involved, humans or computers, share knowledge and objectives and also dynami-
cally and progressively update their understanding for better joint performance. This
captures one aspect of the essence of machines that can be called collaborative.

Group cognition points towards various abilities necessary for collaboration. In
this chapter we ask which of these abilities are needed for collaborative AI’s. Among
the many fields one might consider in the context of collaborative behaviour, man-
agement psychology presents an extensive body of research on how team mem-
bers collaborate to solve common problems together [46], while developmental
psychology has looked more closely at collaboration as an evolving behaviour in
humans [32]. By comparison, AI and HCI research has looked at collaboration from
the principal–agent perspective [65], in terms of dialogue and initiative [5], and as
computer-mediated human–human collaboration [35]. Perhaps the most significant
advances related to algorithmic principles of collaboration in the field of computer
science have been made in the field of interactive intelligent systems [9, 81] and
human–robot interaction [77]. However, on account of its roots in psychology and
education, the concept of group cognition is rarely referred to within computational
and engineering sciences.

To this end,weprovide definitions, examples, and discussion of implications of the
design of such an AI, where ‘AI’ refers mainly to machine learning-based intelligent
systems though not being limited to that sense. We further discuss two key aspects of
group cognition, by borrowing the concepts of conversational grounding and theory
of mind. Even though these concepts overlap somewhat with each other, their use in
combination does not map onto any existing concept in AI research.

Recent advances in AI have shown capabilities that are clearly relevant for group
cognition, such as intent recognition [59], human-level performance in problem-
solving [23], and cognitive artificial intelligences [90]. However, these capabilities
do not trivially ‘add up to’ a capability of group cognition. In contrast to previ-
ous thought, wherein machines have often been described as extended minds or
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‘assistants’, we hold that a system capable of group cognition would better under-
stand human actions as part of a joint effort, align its actions and interpretations with
the interpretation of the group, and update them as the activity evolves. A sense of
dependability and common cause would emerge, which would improve the trustwor-
thiness of such collaboration. In this way, a system capable of group cognition could
participate in more open-ended, or ill-defined, activities than currently possible.

15.2 Definitions of Collaboration

We start by charting some definitions of collaboration. This groundwork serves as
a basis for reflecting on group cognition as a theory of social behaviour. In social
sciences and philosophy, the key phenomenon in collaboration is called intersub-
jectivity. Intersubjectivity refers to how two or more minds interrelate: understand
each other and work together from their individual cognitive positions [83]. Some
well-known social theories related to intersubjectivity are mediated cognition [87],
situated learning [56], knowledge building [45], and distributed cognition [42];
D.J. Wood and B. Gray present an overview of differences among these perspectives
[91]. We illustrate these differences with reference to a small selection of commonly
accepted definitions.

Collaborative work has been defined within the domain of organisational work
as ‘a mutually beneficial relationship between two or more parties who work toward
common goals by sharing responsibility, authority, and accountability for achieving
results’ [18]. This definition is used to understand collaboration in companies and
other organisations, and the focus has been mainly on the outcome and values of
team collaboration. Knowledge discovery in problem-solving is emphasised in the
definition of collaboration as ‘a continued and conjoined effort towards elaborating
a “joint problem space” of shared representations of the problem to be solved’ [7]. A
third definition we wish to highlight focuses on differences among the contributing
actors. Here, collaboration is ‘a process through which parties who see different
aspects of a problem can constructively explore their differences and search for
solutions that go beyond their own limited vision of what is possible’ [38].

In this chapter, we build on a fourth definition, from Roschelle et al., who define
collaboration as ‘a coordinated, synchronous activity that is the result of a continued
attempt to construct and maintain a shared conception of a problem’ [72]. This
definition builds on the notion of collaboration as a cognitive action but also includes
aspects of the previouslymentioned definitions. The latter definition originated in the
field of collaborative learning. Some empirical evidence exists that such collaborative
learning enhances the cognitive capabilities of the people involved, allowing them
as a team to reach a level of cognitive performance that exceeds the sum of the
individuals’ [7].

Collaboration also has to be distinguished from co-operation, a notion that is
at times used to characterise intelligent agents. Roschelle et al. suggest that co-
operative work is ‘accomplished by the division of labour among participants, as an
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activity where each person is responsible for a portion of the problem-solving’ [72],
whereas collaborative learning involves the ‘mutual engagement of participants in a
coordinated effort to solve the problem together’ [72].Co-operation and collaboration
differ also in respect of the knowledge involved and the distribution of labour. To
co-operate means at least to share a common goal, towards whose achievement each
participant in the group will strive. But this is compatible with dividing the task
into subtasks and assigning a specific individual (or subgroup) responsibility for
completing each of these. We can conclude, then, that ‘to collaborate’ has a stronger
meaning than ‘to co-operate’ (in the sense of pursuing a goal that is assumed to be
shared). The former involves working together in a more or less synchronous way,
in order to gain a shared understanding of the task. In this sense, co-operation is a
more general concept and phenomenon than collaboration.

Collaboration is a specific formof co-operation: co-operationworks on the level of
tasks and actions, while collaboration operates on the plane of ideas, understanding,
and representations. In light of these definitions, research on group cognition can be
viewed as an attempt to identify a necessary mechanism behind humans’ ability to
collaborate.

15.3 Group Cognition: A Unifying View of Collaboration

The core research goal on group cognition has been to shed light on cognitive abilities
and social phenomena that together enable what is called ‘collaboration’. The widely
cited definition of group cognition alluded to above points out three qualities: (1) an
ability to converge to a common understanding among agents; (2) an ability to relate
to other agents’ decisions, abilities, and beliefs; and (3) an ability to adapt one’s own
understanding toward a common objective during collaboration [82].

Research on group cognition has focused mostly on learning and ideation tasks in
small groups (of people). A group’s shared knowledge is claimed to be constructed
through a process of negotiating and interrelating diverse views of members. Par-
ticipants learn from each other’s perspectives and knowledge only by accepting the
legitimate role of each within the collaboration. This distinguishes group cognition
from concepts such as extended cognition [36], wherein other participants are vehi-
cles for improving or augmenting the individual’s cognition rather than legitimate
partners. The implication for AI is that, while a system for extended cognition would
allow a person to complete work more efficiently by lessening the cognitive load
or augmenting cognitive abilities, a ‘group-cognitive system’ would complement a
human partner and take initiative by constructing its own solutions, negotiating, and
learning with and for the person. It would not only improve the cognitive abilities of
the human but enhance the overall quality of joint outcomes.

In group cognition, participants construct not only their own interpretations but
interpretations of other participants’ beliefs [82]. This distinguishes group cogni-
tion from previous concepts of collaboration such as conversational grounding [20].
Group cognition is not so much the aggregation of single cognitions as the outcome
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of synchronisation and coordination of cognitive abilities among the participants,
cohering via interpretations of each other’s meanings [86]. It has been argued that
groups that achieve this level feel more ownership of the joint activity [24, 63]. This
observation has encouraged studies of group cognition in childhood development,
work, and learning contexts [3, 13].

In contrast to isolated concepts traditionally used in HCI and AI today, group
cognition may offer a theoretical and practical framing of cognitive processes under-
pinning human-with-human collaboration. For machines to become collaborative
participants, their abilities must be extended toward the requirements following from
attributes of group cognition. This would allow machines to expand their role from
the current one of cognitive tools toward that of actual collaborating agents, enabling
the construction of knowledge and solutions that go beyond the cognition of each
individual participant.

In this chapter, though, we consider mainly dyadic collaboration, involving a
human–machine pair. Even though this restricts our scope to a subset of the phenom-
ena encompassed by group cognition, larger groups require additional co-ordination,
which is not addressed within the constraints of this chapter.

Taking the definition of group cognition as a foundation for our analysis, we can
identify twomain aspects of successful human–machine collaboration: (1) the ability
of recurrently constructing mutual understanding and meaning of the common goal
and interaction context and (2) the ability to interpret not only one’s own reasoning
but also the reasoning of other participants. In order to discuss these requirements
in more detail, we make use of recognised theories from cognitive science and col-
laborative learning – namely, conversational grounding and theory of mind. Both
theories contribute to a comprehensive view of group cognition. Though the two
have considerable overlap, both are necessary if we are to cover the fundamental
aspects of group cognition [7, 82].

In the following discussion, we briefly introduce these theories and explain their
relation to group cognition. Proceeding from this knowledge, we then present key
requirements and explain their potential resolution. Then, in Sect. 15.6, we present
current realisations of systems addressing these requirements, identify limitations,
and present ideas for future research.

15.4 Conversational Grounding

‘Grounding’ refers to the ability to create a shared base of knowledge, beliefs, or
assumptions surrounding a goal striven toward [8]. Whilst taking grounding to be a
complete explanation of collaborative behaviour has been questioned, the concept’s
explanatory power for constructing meaning in small-scale, dyadic collaboration has
been demonstrated in several studies [82].

The term is used in the sense employed by Clark et al. within the tradition of
conversational analysis [20]. They argue that common ground and its establishment
are the basis for collaboration, communication, and other kinds of joint activity.
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Especially within dyadic interactions, it has informed various theoretical frame-
works, even in AI. Among the most prominent are the collaborative model [19],
the Mixed-Initiative (MI) framework [5], and theories of collaborative learning [8].
Grounding highlights the necessity for efficient communication to ground the col-
lective understanding by ensuring not only clear expression of the contributions to
the collaboration but also correct reception by the addressees. It is thus a basic con-
stitutive activity in human–human communication and collaboration.

It has been claimed that two factors influence success in grounding: purpose and
medium [20]. Purpose refers to the objective, desire, or emotion that should be con-
veyed within a collaborative undertaking. Themedium is the technique to express the
current purpose,which includes the cost its application requires. Clark et al. introduce
the concept of the ‘least collaborative effort’ [20], according to which participants
often try to communicate as little as possible – but as much as necessary – with the
most effective medium to allow correct reception. From this perspective, work on
mixed-initiative interaction has addressed mainly the co-ordination of communica-
tion, when to communicate. Grounding could inform MI and other AI frameworks
with regard to how reciprocal understanding among participants could be achieved.
To this end, we can identify four key requirements:

(1) Expressing one’s own objectives: Grounding is based on successful expres-
sion of one’s objectives, requirements, and intents that define the purpose of the
conversation in the collaborative activity [20]. Achieving this with a computer is not
trivial. In amanner depending on themedium, a system has to divide information into
sub-elements, which can then be presented to other group members (e.g., a concept
into sufficiently descriptive words). Among examples that already exist are dialogue
systems applying Belief–Desire–Intention models [48] and theoretical models for
purposeful generation of speech acts [21] to construct meaningful expressions of
objectives. Also, there is a growing body of research exploring the potentials of con-
cept learning [25, 53], which would enable a machine to combine objectives and
communicate or associate them with existing concepts.

(2) Selecting the most effective medium: To collaborate, a participant has to select
the medium that can best convey the purposes of the conversation. In human-to-
human conversation, a purpose can be expressed in various ways, including verbal
and non-verbal communication. The choice of medium depends on the availability
of tools, the effort it requires to use the medium, and the predicted ability of the
collaborator to perceive the purpose correctly. Tools in this context are all of the
means that help to convey the purpose – e.g., speech, pointing, body language, and
extendedmedia such as writing or drawing. The effort of using a medium depends on
skills and the ability to apply them. In the case of drawing, the effort would include
getting a pencil and paper as well as having the ability to draw the intended purpose.
Finally, the selection of the medium depends also on the ability of other participants
to perceive it correctly. This is related to the ability to physically perceive themedium
(for example, hand gestures’ unavailability during a phone call) and to the predicted
ability to understand the medium. The ability of an intelligent system to select a
medium is obviously limited by its physical requirements. While embodied robots
share the same space and the same media as a human and can engage in pointing,
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eye movement, or use of voice [62], virtual agents possess limitations in addressing
physical elements when referring. On the other hand, virtual agents’ enhanced skills
with visual, animated, or written representations of information can be exploited as
a comparatively strong expressive medium.

(3) Evaluating the effort of an action: H.H. Clark and D. Wilkes-Gibbs introduce
the principle of least collaborative effort as a trade-off between the initial effort of
making oneself understood and the effort of rephrasing the initial expression upon
negative acknowledgement, as in the case of misunderstanding [19]. Previous work
on least effort has examined short and precise communication efforts, which favour
unique wording as optimal strategy. In contrast, Clark and Wilkes-Gibbs show that
least collaborative effort does not necessarily follow the same pattern. On account
of the joint effort of understanding within collaboration, the interpretation of least
effort can be relaxed and groups can also acceptwordingswith internal references that
are not necessarily unique to the given context. This presents both an opportunity
and a challenge for machines. The conversation structure of most conversational
agents, such as Siri [47], follows the least effort principle, by providing short and
specific answers. Extending this to a least-collaborative-effort strategy would imply
the ability to connect knowledge with previous and general expressions. N. Mavridis
presents ‘situated language’ to overcome these issues and enable a machine to extend
its communication ability to time- and place-dependent references [62].

(4) Confirming the reception of the initial objective: For successful conversa-
tional grounding, the group member expressing knowledge not only must find the
right medium and dimension for expression but also has to verify correct reception
by other members through evidence [20]. This allows the group to create mutual
understanding within the process. Evidence for understanding may be positive, indi-
cating that the receiving participant understood, or negative. People often strive for
positive evidence of correct reception of their expression, which can be provided
either through positive acknowledgement, such as nodding or ‘mmm-hmm’, or via
a relevant next-turn response, which may be an action or expression building on
the previous turn(s). Naturally, the reaction to the expression might differ with the
medium used. Enabling a machine to evaluate understanding by other group mem-
bers, therefore, entails new research into not just natural-language processing in
relation to natural interaction [11] but also handling of non-verbal behaviour [29].

While grounding refers to the ability to communicate and receive knowledge to
find ‘common ground’, group cognition goes beyond that. It additionally requires
reciprocal interpretation of thoughts and intentions, for relation to other group mem-
bers’ decisions and beliefs [7]. In order to highlight this, we borrow from theory of
mind as a basis for our analysis in the next part of the chapter.

15.5 Theory of Mind

The ability of interpreting one’s own knowledge and understanding as well as inter-
preting other collaborators’ understanding is crucial for successful collaboration
in group cognition [31]. Theory of mind is a topic originating from research on
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cognitive development. It focuses on the ability to attribute mental states to oneself
and others and to recognise that these mental states may differ [15].
Mental states may be beliefs, intentions, knowledge, desires, emotions, or per-
spectives, and understanding of these builds the basis for grounding. The ability to
interpret others’ mental states allows humans to predict the subsequent behaviour
of their collaborators, and it thereby enables inferring the others’ aims and
understandings.

Whilemost research on theory ofmind has focused on developmental psychology,
a growing body of literature backs up its importance for group behaviour [2] and
group cognition [83], suggesting the importance of the concept for human–machine
collaboration [15]. Human–machine interaction nevertheless is often limited by the
level of ability to interpret the ‘mind’ ofmachines, on account of their different, some-
times unexpected, behaviour. People still approach new encounters with technology
similarly to approaching other human beings, and attribute their own preconceptions
and social structures to them [15, 34]. For reason of machines’ inability to interpret
their own mental state and that of others, prediction of the behaviour of humans in
line with preconceptions often fails.
Three abilities stand out as vital for the development of collaborative AI in this
context:

(1) Interpreting one’s own mental states: Enabling an intelligent machine to inter-
pret its ownmental states requires a computational notion of and access to intentions,
desires, beliefs, knowledge, and perspectives. At any point during collaboration, a
mental state with regard to another group member may depend on the content of the
discourse, the situation, and the information about the current objective.

Most AI applications have been limited to specific tasks, to reduce the complexity
of the solution space by decreasing the number of objectives, requirements, and
intents involved.However, this also reduces themachine’s ability to adapt to changing
contexts as found in a discourse, wherein it is necessary to extend the predefined
belief space. Recent approaches in collaborative machine learning have constituted
attempts to overcome the limitation of single-purpose systems [55]. These allow
various information sources, such as sensors, to be integrated into a larger system,
for broader knowledge. However, these sources have to be well integrated with each
other if they are to create coherent knowledge about a situation [36].

(2) Interpreting others’mental states: Humans constantly strive to attributemental
states to other collaboration participants, to enable prediction of the others’ subse-
quent reactions and behaviours [15]. Such reasoning enables conversations to be
incremental. Incremental conversation refers to the ability to follow a common chain
of thoughts and forms the basis of any argumentation and subsequent discussion (as
in brainstorming). A large body of work on machine learning and AI is related to
identifying and predicting human intention [28, 66] and actions [29, 88, 89]. How-
ever, this requirement is reciprocal and implies the same needs related to human
understanding of the AI mind.

(3) Predicting subsequent behaviour: Similarly to interpretation of another’smen-
tal state, prediction of later behaviour can be considered from two sides: Humans
apply a certain set of underlying preconceptions to interactions with intelligent
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systems, which often leads to disrupted experiences that arise from unexpected
behaviour of the system [15, 77]. Scholars are attempting to identify the information
needed for predicting behaviour of machines. In A. Chandrasekaran et al.’s study
of human perception of AI minds [15], humans were not able to predict the sub-
sequent behaviour of the AI even when information about the inner mental states,
like certainty and attention, of the machine was presented. In contrast, research into
machines’ prediction of human behaviour has a long history and has already yielded
promising results [67, 73].

Group cognition is an interactive process among group members and requires
participants to reason about decisions and actions taken by others in order to find
common, agreeable ground for progress in the collaboration. While theory of mind
explains the former underlying cognitive principles well, it does not explain how
this common ground is built. For this reason, we have combined the two theories for
our discussion, to elaborate a more comprehensive list of abilities necessary for AIs’
engagement in collaboration.

15.6 Challenges for Collaborative AI

The group cognition angle may pinpoint mechanisms necessary for collaborative
interaction between humans and artificial agents. In this context, we have high-
lighted two key concepts – conversational grounding and theory of mind. In sum-
mary, group cognition requires both the ability to internalise and constantly update
knowledge in line with one’s interpretation, as described in theory of mind, and a
mutual understanding of the collaboration’s purpose, provided through grounding.
In the following discussion, we reflect on how these two concepts tie in with current
research on AI, highlighting which capabilities may already be achievable by means
of existing methods and which still stand out as challenges for future research.

15.6.1 Identify One’s Own Mental States

Human–human collaboration is based on the assumption that participants are able to
identify their own objectives, knowledge, and intents – in other words, their mental
states. Extrapolating intentions fromone’s ownknowledge based on the collaboration
interaction and the mutual understanding of the goal is crucial.

Two limitations stand out. Firstly, although there is increasing interest in self-
aware AI, most work on the inference of mental states has considered inference of
people’s mental states while ignoring the necessity of interpreting the machines’
‘mental states’ [15]. Secondly, because ‘common sense’ is still out of reach for AI,
most (interactive) machine learning and AI systems address only narrow-scoped
tasks. This limits their ability to form a complete picture of the situation, inferring
and constructing human-relatable intents.
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15.6.2 Select the Communication Medium
and Express Objectives

If it is to express objectives and intents, a machine has to select the most efficient way
to express them, as suggested in our discussion of grounding. There is a trade-off
between the effort it takes for the machine to use a certain communication medium
and the chances of the communication being received incorrectly.

Themedium of choice formost interactive virtual agents is text. Examples include
interactive health interfaces [33, 71] and industrial workflows [39], along with dia-
logue systems such as chat bots [41] and virtual personal assistants [57]. In recent
virtual assistants, text is often transformed into spoken expression. However, the sys-
tems usually apply stimulus–response or stimulus–state–response paradigms, which
does not suffice for natural speech planning or dialogue generation [62]. Another
medium is visual representation via, for example, drawing, sketching, and/or pre-
senting related images. Even if it requires further effort to translate the objectives of
a conversation to visual representation, people are especially good at understanding
drawings of concepts, even when these are abstract [19]. While virtual agents are
starting to use graphics such as emoji or more complex images to convey emotions
[30], communication through visual representations, overall, represents an under-
researched opportunity in human–machine collaboration. The field of human–robot
interaction, meanwhile, has looked at more natural conversational media for express-
ing objectives or intents [62]. Here, verbal communication is combined with non-
verbal communication, such as gaze-based interaction [93], nodding [79], pointing
[74], and facial gestures.

However, more studies are needed before we will be able to exploit the poten-
tial of gestural and gaze behaviour, along with more graphical representations at
different abstraction levels. That work could result in a more efficient medium for
communication to humans than is observable in human interaction today.

15.6.3 Confirm the Reception and Interpretation
of Objectives

Communication, according to the grounding theory, is successful when a mutual
understanding is created.This requires successful receptionof theobjective expressed.
Reception – and acknowledgement of it to the communication partner – is necessary
for understanding of mental states and objectives within a group. We can borrow
the principle of evidence for reception [20] to state that machines should expect and
work with the notion of positive or negative evidence.

Here, negative and positive evidence have a more specific meaning than in the
sense of negative and positive feedback familiar from machine learning. Clark et
al. identify two possible ways of giving positive evidence, next-turn responses and
positive acknowledgement [20]. Next-turn responses are evaluated by looking at the
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coherence between one’s own inference and the groupmember’s next-turn responses
as well as the initial objectives of the conversation. A.C. Graesser et al., for example,
present an intelligent tutoring system that emphasises the importance of next-turn
response that is based on learning expectations instead of predefined questions [37].
When interacting with a student, it ‘monitors different levels of discourse structure
and functions of dialogue moves’ [37]. After every answer, it compares the response
with the objectives by applying latent semantic analysis, then chooses its commu-
nication strategy accordingly. This allows the system to reformulate the question or
objective when it perceives that the response does not match expectations. Further
examples of such systems are presented by B.P. Woolf [92].

In open-ended tasks such as brainstorming, however, the next-turn responsemight
not have to do with the initial objective so much as with extension or rejection
of the intent behind it. In such contexts, humans often fall back to positive and
negative acknowledgements. Recognising social signals such as nodding, gaze, or
back-channel words of the ‘uh-huh’ type as positive acknowledgement plays an
important role in human interaction and hence is an important ability for a fully
collaborativemachine.Within thefield of human–robot interaction, recognising these
signals has been an active research topic for some time [69, 94]. D. Lala et al.
have presented a social signal recognition system based on hierarchical Bayesian
models that consider nodding, gaze, laughing, and back-channelling as social signals
for engagements and acknowledgement [54] with promising results. This approach
allows determining which social cues are relevant on the basis of judgements of
multiple third-party observers and includes the latent character of an observer as a
simulation of personality. The detection of social signals, acknowledgements, would
allow a machine to adapt its behaviour and reactions to the other group members.

15.6.4 Interpret the Reasoning of Others

If they are to contribute efficiently to a collaborative effort, group members have
to understand the reasoning of the other participants. We use ‘reasoning’ to mean
not merely mental states but also the logic and heuristics a partner uses to move
from one state to another. This is necessary for the inclusion and convergence of
thoughts, intentions, and perspectives in group cognition. While there is a large body
of research on human intent recognition [50, 64] and cognitive state recognition
[10], researchers have only recently acknowledged the importance of the reciprocal
position, that humans need to understand the computer’s reasoning. We review the
topic only briefly here and refer the interested reader to chapters of this book that
deal with it more directly.

Transparent or explainable machine learning is a topic of increasing interest.
Stemming mainly from the need to support people who apply machine learning in,
for example, health care [14] or finance [96], the need for understanding the internal
states of machines is relevant also with regard to collaborative machines. Z.C. Lipton
[61] points out, in opposition to popular claims, that simple models – such as linear
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models – are not strictly more interpretable than deep neural networks, because
it depends on the notion of interpretability employed. The complexity of neural
networks through different acting layers and raw input data increases the realism
of presented results relative to human expectations; this supports interpretability of
the machine’s actions. In contrast, linear models rely on hand-engineered features,
which can increase the algorithmic predictability but can render unexpected results,
which are less expressible themselves.

T. Lei et al.’s approach of rationalising neural networks provides insight into the
explainability of internal states on the basis of text analysis [58].By training a separate
neural network on subsections of the text, they highlighted those parts likely to have
caused the decision of the main network. Another example of explaining deep neural
networks is presented by L.A. Hendricks et al. [40]. They used a convolutional neural
network to analyse image features and trained a separate recurrent neural network
to generate words associated with the decision-relevant features. While this method
provided good results, the explanatory power is tied to the structure of the network.
In a third example, M.T. Ribeiro contributed his LIME framework, a technique to
explain any classifier prediction, by learning a proxy interpretable model for certain
locally limited predictions [68]. While the above-mentioned work focuses on the
explainability of machine learning and AI output, a promising framework presented
by T. Kulesza et al. describes some tenets for self-explainable machines [52]. In their
work, a system was able to explain how each prediction was made and allowed the
user to explain any necessary corrections back to the system, which then learned and
updated in line with that input.

Most of today’s approaches rely on separate training or manually added informa-
tion, which limits the scope of these systems to carefully selected and limited tasks.
In contrast, with more open-ended tasks, the potential context to be considered might
not be manually pre-determined. We note that for group cognition it may not be nec-
essary to explain to the user the reasoning that produced the outcome as opposed
to a selected set of belief states. Their relevance is determined, in contrast, by the
collaboration situation and themental state of the communication partner. That poses
a challenge for future work.

15.6.5 Predict Collaborative Actions of Others

Proceeding from their own knowledge and the reasoning of other group members,
participants can predict others’ behaviour. Again, this should be interpreted as a
reciprocal process including all members of the group. While previous research has
focused primarily on the prediction of human behaviour [67, 73], some recent work
has looked at prediction of machine actions by a human [15].

Chandrasekaran et al. evaluated the modalities necessary to enable humans to
create a ‘Theory of AI Mind’ [15]. In their study, participants were asked to infer the
AI’s answer with regard to a given image for questions such as ‘Howmany people are
in this image?’, with or without additional information presented alongside the AI’s
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response for the previous item. The users’ answers could be seen as the behaviour
expected of the AI. The modalities tested were a confidence barchart of the five best
predictions; and an implicit and explicit attention map provided as a heatmap for the
image. After the prediction, users were provided with instant feedback in the form of
the system’s answers. Users who had been presented with additional modalities too
were shown to have results with equal or lower accuracy in comparison to users who
received only the instant feedback. However, an increase in prediction accuracy after
only a few trials indicates that users learned to predict the machine’s behaviour better
through familiarisation than via additional information about internal processes. The
additional information seemed to encourage users to overadapt to system failures,
which resulted in worse overall prediction. Further studies are needed to evaluate
other potential sources of improved behaviour prediction. However, these first results
might indicate that, to understand and predictAI, humansmay needmore information
than that referring to reasoning alone.

The concept of group cognition comes from the discipline of collaborative learn-
ing, which has emphasised the necessity of each participant continuously learning
and updating said participant’s knowledge, concepts, and ideas. Having their origins
in psychology, the notions behind collaborative learning assume human-level under-
standing, communication, and learning capabilities. In the context of collaborative
machines, these traits do not exist yet and will have to be explicitly implemented.
We will next consider some opportunities for such implementations.

15.6.6 Update Knowledge for Social Inference

During collaboration, the group members must integrate inferences of other partic-
ipants with their existing knowledge. An extensive set of methods exists that may
achieve this. Among these are inverse reinforcement learning [1], Bayesian belief
networks [17], and variants of deep neural networks [22]. Results have been pre-
sented for social inference in special tasks, as language learning [17] and learning
through presentation [1, 6]. However, these approaches assume for the most part that
the human provides input for the machine to learn from, and they do not integrate
the human more deeply into the loop.

Interactive machine learning adds the human to the loop but has mainly been
applied for purposes of enriching data or boosting unsupervised or supervised learn-
ing [70]. P. Sinard et al. define interactive machine learning as machine learning
wherein the user can provide information to the machine during the interaction pro-
cess [80]. Meanwhile, A. Holzinger [43] considers interactive machine learning as
a type of collaboration between algorithm and human [70]. He points out that not
all input presented to a machine can be trained for, and that the machine has to
be able to adapt to such situations. He presents an approach using an ant-colony
algorithm to solve a travelling-salesman problem [44]. The algorithm presents the
optimal path found thus far and allows the user to alter this path, in line with the
contextual knowledge he possesses. Holzinger’s results illustrate that this approach
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speeds up the discovery of the optimal path in terms of iteration when compared to
machine-only optimisation. Even though this approach allows the machine and the
human to work on a mutual goal, the common objective is fixed at the outset of the
task.

Another line of research relevant in this context is that into multi-agent systems
[84]. Work on multi-agent systems often refers to critical tasks such as disaster-
response control systems [75] or autonomous cars [27], wherein the aim is of ‘a
mixture of humans performing high level decision-making, intelligent agents coor-
dinating the response and humans and robots performing key physical tasks’ [75].
For a review of multi-agent systems, we direct the reader to Y. Shoham and K.
Leyton-Brown [78]. In general, research on human-in-the-loop multi-agent sys-
tems has focused on the task, the activity, and the role each agent should have in
order to contribute to reaching the defined goal [12]. For example, A. Campbell and
A.S. Wu highlight the criticality of role allocation, where a role is ‘the task assigned
to a specific individual within a set of responsibilities given to a group of individuals’,
for designing, implementing, and analysing multi-agent systems [12]. They further
present computational models for various role-allocation procedures in accordance
with a recent review of multi-agent methods. Role allocation, according to them,
grows ‘more important as agents become more sophisticated, multi-agent solutions
become more ubiquitous, and the problems that the agents are required to solve
become more difficult’ [12]. While most multi-agent research looks at machine
agents, as found in sensor–networks [4], some concepts and principles for the co-
ordination of collaboration and for how roles within a group can be allocated in the
most efficient way could be used for collaborative AI. However, in the strong sense
of the word ‘collaboration’, most of the multi-agent methods do not foster interactive
behaviour on common ground so much as favour individual task allocation. Never-
theless, experiences from these models can aid in understanding how roles influence
this interaction.

15.6.7 Apply New Types of Initiative in Turn-Taking

While learning in groups is a shared task with a common goal, in open-ended interac-
tion the goal depends on the current topics and can change as soon as new ideas start
being explored. Hence, there is a need for understanding which knowledge most
efficiently contributes to the current collaboration, and when. J. Allen et al.’s [5]
well-known mixed-initiative interaction framework provides a method for inferring
when to take initiative. Since Allen proposed it, this framework has been applied
in various contexts of interactive systems, among them intelligent tutoring systems
[37], interactive machine learning [16], and creative tools [26].

On the other hand, the decision on what to contribute presents a trade-off
between context-aligned recommendations (following the current chain of thoughts)
and exploratory recommendation (diversion from the current ideas). Contextually
aligned reactions, analogously with value-aligned interactions [76], may take less
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effort to communicate and react to, for reason of existing context and already
shared references. While these reactions are more likely to be understood by other
group members, they do not necessarily explore new possible solution spaces.
What could be called ‘exploratory initiatives’, on the other hand, bring with them
the problem that future topics are partly unknown and that, accordingly, selec-
tion of the ‘right’ idea path to follow can be a thorny problem. This unknown
solution space presents a challenge for selection, encouraging, and elaboration of
new ideas. Perhaps the trade-off of initiatives that explore versus exploit new top-
ics could be modelled in a manner paralleling that in optimisation. However, the
first solutions for acting and learning in partly non-observable environments, known
mainly as a partially observable Markov decision process (POMDP), are promising.
Already, POMDPs are being used for decision-making and selection in human–robot
interaction [49, 85, 95]. In T. Taha et al.’s work, for example, a POMDP guides the
communication layer, which facilitates the flow and interpretation of information
between the human and the robot [85]. Applying this information, the robot makes
its action plan, while the current task, status, observed intention, and satisfaction are
used to model the interaction within the POMDP. The paper’s authors highlight that
with a minimum amount of input the system was able to change the action plan or
add corrective actions at any time.

While current research on interactive systems offer various approaches to co-
ordinate, engage in, and facilitate interactions, none of them cover all the neces-
sities for collaborative behaviour in the sense of group cognition. However, these
approaches do present the prerequisites for future developments of such systems.

15.7 Conclusion

We have discussed cognitive abilities necessary for collaborative AI by building on
the concept of group cognition. We reviewed some promising current approaches,
which reflect that some aspects of these abilities are already identifiable and partially
addressed. However, more research needs to be done. The main topics we have iden-
tified for future research are related to the expressiveness of machines, the ability to
understand human interaction, and inherent traits of the behaviour of machines. We
have highlighted in this context the necessity of extending and enhancing potential
communicationmedia ofmachines for purposes ofmore human-like communication,
including social signal recognitionwithin collaborative processes. Scholars research-
ing collaborative machines could draw from previous experiences of human-robot
interaction and adapt the findings to the particular context at hand. Another limitation
of current approaches is related to the explainability of machine reasoning. In order
to construct a ‘Theory of AIMind’, as framed by Chandrasekaran et al. [15], a human
has to be able to understand the reasoning behind an action, so as to recognise the
machine’s intent andmost probable behaviour.We have presented several approaches
to resolving this issue; however, the question of what best explains the reasoning of
a machine remains. Finally, we must reiterate the necessity of extending current
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approaches in machine learning and interactive machine learning to act under the
uncertainty conditions typical of human collaboration. This would enable machines
to make suggestions and act in open-ended collaboration such as discussions and
brainstorming, for which the idea space is not defined beforehand.
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9. Bradáč, V., Kostolányová, K.: Intelligent tutoring systems. In: E-Learning, E-Education, and

Online Training: Third International Conference, eLEOT 2016, Dublin, Ireland, August 31–
September 2, 2016, Revised Selected Papers, pp. 71–78. Springer (2017)

10. Cai, Z., Wu, Q., Huang, D., Ding, L., Yu, B., Law, R., Huang, J., Fu, S.: Cognitive state recog-
nition using wavelet singular entropy and arma entropy with afpa optimized gp classification.
Neurocomputing 197, 29–44 (2016)

11. Cambria, E., White, B.: Jumping nlp curves: a review of natural language processing research.
IEEE Comput. Intell. Mag. 9(2), 48–57 (2014)

12. Campbell, A., Wu, A.S.: Multi-agent role allocation: issues, approaches, and multiple perspec-
tives. Auton. Agent. Multi-Agent Syst. 22(2), 317–355 (2011)

13. Cannon-Bowers, J.A., Salas, E.: Reflections on shared cognition. J. Organ. Behav. 22(2), 195–
202 (2001)

14. Caruana, R., Lou, Y., Gehrke, J., Koch, P., Sturm, M., Elhadad, N.: Intelligible models for
healthcare: Predicting pneumonia risk and hospital 30-day readmission. In: Proceedings of the
21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
1721–1730. ACM (2015)

15. Chandrasekaran, A., Yadav, D., Chattopadhyay, P., Prabhu, V., Parikh, D.: It takes two to tango:
towards theory of ai’s mind (2017). arXiv:1704.00717

16. Chau, D.H., Kittur, A., Hong, J.I., Faloutsos, C.: Apolo: making sense of large network data
by combining rich user interaction and machine learning. In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pp. 167–176. ACM (2011)

janin.koch@aalto.fi

http://arxiv.org/abs/1704.00717


15 Group Cognition and Collaborative AI 309

17. Cheng, J., Greiner, R.: Learning bayesian belief network classifiers: algorithms and system.
In: Advances in artificial intelligence, pp. 141–151 (2001)

18. Chrislip, D.D., Larson, C.E.: Collaborative leadership: how citizens and civic leaders can make
a difference, vol. 24. Jossey-Bass Inc Pub (1994)

19. Clark, H.H., Wilkes-Gibbs, D.: Referring as a collaborative process. Cognition 22(1), 1–39
(1986)

20. Clark, H.H., Brennan, S.E., et al.: Grounding in communication. Perspect. Soc. Shar. Cogn.
13(1991), 127–149 (1991)

21. Cohen, P.R., Perrault, C.R.: Elements of a plan-based theory of speech acts. Cogn. Sci. 3(3),
177–212 (1979)

22. Dahl, G.E., Yu, D., Deng, L., Acero, A.: Context-dependent pre-trained deep neural networks
for large-vocabulary speech recognition. IEEE Trans. Audio Speech Lang. Process. 20(1),
30–42 (2012)

23. Dartnall, T.: Artificial intelligence and creativity: an interdisciplinary approach, vol. 17.
Springer Science & Business Media (2013)

24. de Haan, M.: Intersubjectivity in models of learning and teaching: reflections from a study
of teaching and learning in a mexican mazahua community. In: The theory and practice of
cultural-historical psychology, pp. 174–199 (2001)

25. De Jong, K.A., Spears, W.M., Gordon, D.F.: Using genetic algorithms for concept learning.
Mach. Learn. 13(2–3), 161–188 (1993)

26. Deterding, C.S., Hook, J.D., Fiebrink, R., Gow, J., Akten, M., Smith, G., Liapis, A., Compton,
K.: Mixed-initiative creative interfaces (2017)

27. Dresner, K., Stone, P.: Amultiagent approach to autonomous intersectionmanagement. J. Artif.
Intell. Res. 31, 591–656 (2008)

28. ElKaliouby, R., Robinson, P.:Mind readingmachines: automated inference of cognitivemental
states from video. In: 2004 IEEE International Conference on Systems, Man and Cybernetics,
vol. 1, pp. 682–688. IEEE (2004)

29. El Kaliouby, R., Robinson, P.: Real-time inference of complexmental states from facial expres-
sions and head gestures. In: Real-Time Vision for Human-Computer Interaction, pp. 181–200.
Springer (2005)

30. Emojis as content within chatbots and nlps (2016). https://www.smalltalk.ai/blog/2016/12/9/
how-to-use-emojis-as-content-within-chatbots-and-nlps

31. Engel, D., Woolley, A.W., Jing, L.X., Chabris, C.F., Malone, T.W.: Reading the mind in the
eyes or reading between the lines? Theory of mind predicts collective intelligence equally well
online and face-to-face. PloS one 9(12), e115,212 (2014)

32. Flavell, J.H.: Theory-of-mind development: retrospect and prospect. Merrill-Palmer Q. 50(3),
274–290 (2004)

33. Fotheringham, M.J., Owies, D., Leslie, E., Owen, N.: Interactive health communication in
preventive medicine: internet-based strategies in teaching and research. Am. J. Prev. Med.
19(2), 113–120 (2000)

34. Fussell, S.R., Kiesler, S., Setlock, L.D., Yew, V.: How people anthropomorphize robots. In:
2008 3rd ACM/IEEE International Conference on Human-Robot Interaction (HRI), pp. 145–
152. IEEE (2008)

35. Galegher, J., Kraut, R.E., Egido, C.: Intellectual Teamwork: Social and Technological Foun-
dations of Cooperative Work. Psychology Press (2014)

36. Goldstone, R.L., Theiner, G.: The multiple, interacting levels of cognitive systems (milcs)
perspective on group cognition. Philos. Psychol. 30(3), 334–368 (2017)

37. Graesser, A.C., VanLehn, K., Rosé, C.P., Jordan, P.W., Harter, D.: Intelligent tutoring systems
with conversational dialogue. AI Mag. 22(4), 39 (2001)

38. Gray, B.: Collaborating: Finding Common Ground for Multiparty Problems (1989)
39. Guzman, A.L.: The messages of mute machines: human-machine communication with indus-

trial technologies. Communication+ 1 5(1), 1–30 (2016)
40. Hendricks, L.A., Akata, Z., Rohrbach, M., Donahue, J., Schiele, B., Darrell, T.: Generating

visual explanations. In: European Conference on Computer Vision, pp. 3–19. Springer (2016)

janin.koch@aalto.fi

https://www.smalltalk.ai/blog/2016/12/9/how-to-use-emojis-as-content-within-chatbots-and-nlps
https://www.smalltalk.ai/blog/2016/12/9/how-to-use-emojis-as-content-within-chatbots-and-nlps


310 J. Koch and A. Oulasvirta

41. Hill, J., Ford, W.R., Farreras, I.G.: Real conversations with artificial intelligence: a comparison
between human-human online conversations and human-chatbot conversations. Comput. Hum.
Behav. 49, 245–250 (2015)

42. Hollan, J., Hutchins, E., Kirsh, D.: Distributed cognition: toward a new foundation for human-
computer interaction research. ACM Trans. Comput.-Hum. Interact. (TOCHI) 7(2), 174–196
(2000)

43. Holzinger,A.: Interactivemachine learning for health informatics:when dowe need the human-
in-the-loop? Brain Inform. 3(2), 119–131 (2016)
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