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ABSTRACT
An important problem for HCI researchers is to estimate the
parameter values of a cognitive model from behavioral data.
This is a difficult problem, because of the substantial complex-
ity and variety in human behavioral strategies. We report an
investigation into a new approach using approximate Bayesian
computation (ABC) to condition model parameters to data and
prior knowledge. As the case study we examine menu interac-
tion, where we have click time data only to infer a cognitive
model that implements a search behaviour with parameters
such as fixation duration and recall probability. Our results
demonstrate that ABC (i) improves estimates of model pa-
rameter values, (ii) enables meaningful comparisons between
model variants, and (iii) supports fitting models to individual
users. ABC provides ample opportunities for theoretical HCI
research by allowing principled inference of model parameter
values and their uncertainty.
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mation processing

Author Keywords
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INTRODUCTION
It has become relatively easy to collect large amounts of data
about complex user behaviour. This provides an exciting op-
portunity as the data has the potential to help HCI researchers
understand and possibly predict such user behavior. Yet, un-
fortunately it has remained difficult to explain what users are
doing and why in a given data set.

The difficulty lies in two problems: modeling and inference.
The modeling problem consists of building models that are
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sufficiently general to capture a broad range of behaviors.
Any model attempting to explain real-world observations must
cover a complex interplay of factors, including what users
are interested in, their individual capacities, and how they
choose to process information (strategies). Recent research
has shown progress in the direction of creating models for
complex behavior [5, 13, 14, 16, 19, 21, 25, 27, 29, 36]. After
constructing the model, we are then faced with the inference
problem: how to set the parameter values of the model, such
that the values agree with literature and prior knowledge, and
that the resulting predictions match with the observations we
have (Figure 1). Unfortunately, this problem has been less
systematically studied in HCI. To this end, the goal of this
paper is to report an investigation into a flexible and powerful
method for inferring model parameter values, called approxi-
mate Bayesian computation (ABC) [42].

ABC has been applied to many scientific problems [7, 15, 42].
For example, in climatology the goal is to infer a model of
climate from sensor readings, and in infectious disease epi-
demiology an epidemic model from reports of an infection
spread. Inference is of great use both in applications and
in theory-formation, in particular when testing models, iden-
tifying anomalies, and finding explanations to observations.
However ABC, nor any other principled inference method,
have, to our knowledge, been applied to complex cognitive
models in HCI1.

We are interested in principled methods for inferring parame-
ter values, because they would be especially useful for process
models of behaviour. This is because the models are usually
defined as simulators, and thus the inference is very difficult to
perform using direct analytical means2. Such process models
in HCI have been created, for example, based on cognitive
science [2, 9, 11, 16, 26, 41], control theory [23], biomechan-
ics [4], game theory [10], foraging [38, 37], economic choice
[3], and computational rationality [13]. In the absence of prin-
cipled inference methods for such models, some approaches

1For simpler models, such as regression models (e.g., Fitts’ law),
there exist well-known methods for finding parameter values, such as
ordinary least squares.
2In technical terms, such models generally do not have a likeli-
hood function—defining the likelihood of parameter values given the
observations—that could be written in closed form.



Figure 1. This paper studies methodology for inference of parameter
values of cognitive models from observational data in HCI. At the bot-
tom of the figure, we have behavioral data (orange histograms), such as
times and targets of menu selections. At the top of the figure, a cognitive
model generates simulated interaction data (blue histograms). In this
paper, approximate Bayesian computation (ABC) is investigated to iden-
tify the model parameter values that yield the best fit between the real
data and simulator-generated data, while keeping the parameter values
reasonable given prior knowledge.

have included: (1) simplifying models until traditional infer-
ence methods are possible; (2) using values adopted from the
literature or adjusting them without studying their effect on
behavior; or (3) manually iterating to find values that lead to ac-
ceptable performance. Compared to this, principled inference
methods might reduce the potential for ambiguity, miscalcu-
lation, and bias, because model parameter values could be
properly conditioned on both literature and prior knowledge,
as well as the observation data.

ABC is particularly promising for inferring the values of pro-
cess model parameters from naturalistic data—a problem that
is known to be difficult in cognitive science [31]. The reason is
that ABC does not make any further assumptions of the model,
apart from the researcher being able to repeatedly simulate
data from it using different parameter values. ABC performs
inference by systematically simulating user behavior with dif-
ferent parameter configurations. Based on the simulations,
ABC estimates which parameter values lead to behavior that
is similar to observations, while also being reasonable consid-
ering our prior knowledge of plausible parameter values.

As a challenging and representative example, this paper looks
at a recent HCI process model class in which behavioral strate-
gies are learned using reinforcement learning [13, 16, 17, 36].
These models assume that users behave (approximately) to
maximize utility given limits on their own capacity. The mod-
els predict how a user will behave in situations constrained by
(1) the environment, such as the physical structure of a user
interface (UI); (2) goals, such as the trade-off between time
and effort; and (3) the user’s cognitive and perceptual capabil-
ities, such as memory capacity or fixation duration. This class
of models, called computational rationality (CR) models, has
been explored previously in HCI, for example in SNIF-ACT
[16], economic models of search [3], foraging theory [38], and
adaptive interaction [36]. The recent interest in this class is
due to the benefit that, when compared with classic cognitive
models, it requires no predefined specification of the user’s

task solution, only the objectives. Given those, and the con-
straints of the situation, we can use machine learning to infer
the optimal behavior policy. However, achieving the inverse,
that is inferring the constraints assuming that the behavior is
optimal, is exceedingly difficult. The assumptions about data
quality and granularity of previously explored methods for
this inverse reinforcement learning problem [32, 39, 45] tend
to be unreasonable when often only noisy or aggregate-level
data exists, such as is often the case in HCI studies.

Our application case is a recent model of menu interaction
[13]. The model studied here has previously captured adap-
tation of search behavior, and consequently changes to task
completion times, in various situations [13]. The model makes
parametric assumptions about the user, for example about the
visual system (e.g., fixation durations), and uses reinforcement
learning to obtain a behavioral strategy suitable for a partic-
ular menu. The inverse problem we study is how to obtain
estimates of the properties of the user’s visual system from
selection time data only (click times of menu items). How-
ever, due to the complexity of the model, its parameter values
were originally tuned based on literature. Later in Study 1, we
demonstrate that we are able to infer the parameter values of
this model based on observation data, such that the predictions
improve over the baseline, while the parameter values still
agree with the literature. To the best of our knowledge, this is
also the first time such inverse reinforcement learning problem
has been solved based on aggregate-level data.

We also aim to demonstrate the applicability of ABC, and
inference in general, in two situations: model development
and modeling of individuals. In Study 2, we demonstrate how
ABC allows us to make meaningful comparisons between mul-
tiple model variants, and their comparable parameters, after
they all have been fit to the same dataset. This presents a
method for speeding up the development of these kind of com-
plex models, though automatic inference of model parameter
values. In Study 3, we demonstrate how ABC allows us to
infer model parameter values for individual users. We discover
that overall these individual models outperform a population-
level model fit to a larger set of data, thus demonstrating the
benefit of individual models. As a comparison, it would not
be possible to fit individual models based on literature alone,
as the information generally only applies on population level.

OVERVIEW OF APPROACH
This paper is concerned with inference of model parameter val-
ues from data, which is also called inverse modeling. Inverse
modeling answers the question: “what were the parameter
values of the model, assuming the observed data was gener-
ated from the model?” Our goal is to assess the usefulness of
approximate Bayesian computation (ABC) [42] to this end.

We now give a short overview of inverse modeling in HCI, after
which we review ABC and explain its applicability. We finally
provide a short overview of the particular ABC algorithm,
BOLFI [18], we use in this study.

Inverse Modeling Approaches for Cognitive Models
For models that have simple algebraic forms, such as linear
regression, inverse modeling is simple, as we can explicitly



Figure 2. Overview of the ABC inference process for HCI models: Ob-
served user data and priors of the parameters are fed into the ABC al-
gorithm, which then approximates the posterior distribution of the pa-
rameter values. The algorithm iterates by choosing values for the pa-
rameters of the model (here a CR model) and generating simulated user
data. For CR models, generating simulated data requires first training
a reinforcement learning agent using the given parameter values.

write down the formula for the most likely parameter values
given data. For complex models, such formula might not exist,
but it is often possible to write down an explicit likelihood
function, L(θ |Yobs), which evaluates the likelihood of the pa-
rameters θ given the observed data Yobs. When this likelihood
function can be evaluated efficiently, inverse modeling can be
done, even for reinforcement learning (RL) models [32, 39,
45]. However, this inverse reinforcement learning has been
only possible when precise observations are available of the
environment states and of the actions the agent took, which in
HCI applications is rarely the case.

When the likelihood function of the model can not be evaluated
efficiently, there are generally two options left. The traditional
way in HCI has been to set the model parameters based on past
models and existing literature. If this has not led to acceptable
predicted behavior, the researcher might have further tuned
the parameters by hand until the predictions were satisfactory.
However, this process generally has no guarantees that the
final parameters will be close to the most likely values. An
alternative solution, which we have not seen used in HCI con-
text before, would be to use likelihood-free inference methods,
that allow the model parameters to be estimated without re-
quiring the likelihood function to be evaluated directly. These
methods are derived based on mathematical principles, and
thus offer performance guarantees, at least in the asymptotic
case. ABC is one such method [42], and we will explain it
next in more detail.

Approximate Bayesian Computation (ABC)
ABC is a principled method for finding parameter values for
complex HCI models, including simulators, based on observed
data and prior knowledge. It repeatedly simulates data using
different parameter values, in order to find regions of the
parameter space that lead to simulated data that is similar to the
observed data. Different ABC algorithms differ, for example,
in the way in which they choose the parameter values.

The main benefit of ABC for HCI is its generality: the only
assumption needed is that the researcher is able to repeat-
edly simulate observations with different parameter values.
Therefore, while in this paper we examine only a particular
simulator, the approach is of more general value. To be precise,
ABC can be used in the following recurring scenario in HCI:

• Inputs: A model M with unknown parameters θ ; prior
knowledge of reasonable values for θ (for example from

literature); observations Yobs of interactive behavior (for
example from user study logs)

• Outputs: Estimates of likely values for parameters θ and
their uncertainty. Likely values of θ should produce a close
simulated replication of observed data: M(θ)≈ Yobs, while
still being plausible given prior knowledge.

The process of using ABC is depicted in Figure 2. First the
researcher implements her model as an executable simulator.
Values for well-known parameters of the model are set by hand.
For inferred parameters θ a prior probability distribution P(θ)
is defined by the researcher based on her prior knowledge
of plausible values. The researcher then defines the set of
observations Yobs that θ will be conditioned on. Next, the re-
searcher defines a discrepancy function d(Yobs,Ysim)→ [0,∞),
that quantifies the similarity of the observed and simulated
data in a way meaningful for the researcher. Finally, an ABC
algorithm is run; it selects at which parameter values {θi} the
simulator will be run, and how the conditional distribution of
the parameter values, also known as the posterior P(θ |Yobs),
is constructed based on the simulations.

BOLFI: An ABC Variant Used in This Paper
This paper employs a recent variant of ABC called BOLFI
[18], which reduces the number of simulations3 while still
being able to get adequate estimates for θ . An overview of the
method is shown in Figure 3.

The main idea of BOLFI is to learn a statistical regression
model—called a Gaussian process—for estimating the dis-
crepancy values over the feasible domain of θ from a smaller
number of samples that do not densely cover the whole pa-
rameter space. This is justified when the situation is such that
small changes in θ do not yield large changes in the discrep-
ancy. Additionally, as we are most interested in finding regions
where the discrepancy is small, BOLFI uses a modern opti-
mization method called Bayesian optimization for selecting
the locations where to simulate. This way we can concentrate
the samples to parameter regions that are more likely to lead
to low discrepancy simulated data. This approach has resulted

3The naive way to use ABC would be to simulate a large amount of
samples densely covering the parameter space and keep those that
have the lowest discrepancy values. This method is also known as
Rejection ABC. However, as in our case the simulations take multiple
hours each, this approach has infeasible total computation time.

Figure 3. Left: BOLFI finds parameter values that are best able to re-
produce empirical observations Y0 (here the best sample is Y3, produced
by simulating with parameter values θ3). Right: BOLFI first constructs
a statistical regression model for predicting the discrepancy values d as-
sociated with different parameter values θ , and then uses Lower Confi-
dence Bound (LCB) values for choosing the next sample location θnext .



in 3–4 orders of faster inference compared with the state-of-
the-art ABC algorithms. Details of the method are given in
the paper by Gutmann and Corander [18].

CASE: MODEL OF MENU SELECTION
Our case looks at a recent model for visual search of menus,
introduced by Chen et al. [13]. The purpose of this model is to
predict the visual search behavior (how eyes fixate and move)
and task completion times of a person searching for an item
from a vertical menu.

This model presents a particularly challenging problem for
inference of parameter values because substantial computation
is required by the reinforcement learning algorithm to calculate
the search behavior policy, given a particular parameter set.
The parameters of Chen et al.’s model [13] describe cognitive
characteristics of a user, such as the duration of a saccade
when searching through the menu. In contrast to Chen et
al. [13], where parameters were largely set to values in the
literature4, the inference problem that we study here is to
estimate parameter values based on limited behavioral data:
click times for menu items. Across the studies, we condition
the parameter values of this model, and it’s variants, to this
type of data in different settings.

Introduction to Computational Rationality
An important property of the model we examine [13] is that
it computes computationally rational policies—behavior pat-
terns optimized to maximize the utility of an agent given its
bounds and goals [28]. The bounds include limitations on the
observation functions and on the actions that the agent can
perform. These bounds define a space of possible policies.
The use of computationally rational agents to model cognition
has been heavily influenced by rational analysis, a method
for explaining behavior in terms of utility [1, 12, 35], an idea
used for example in information foraging theory and economic
models of search [3, 38]. Computational rational agents have
4 For example, the saccade duration parameters were set based on a
study by Baloh et al. [6] and the fixation duration parameters based
on a study by Brumby et al. [8].

Figure 4. Case model: A simulation process figure of the computational
rationality model of user interaction with drop-down menus, adapted
from Chen et al. [13]. The Q-table is constructed in the training phase;
in the simulation phase it is kept fixed.

been used to model a number of phenomena in HCI [36]. Ap-
plications relevant to this paper include menu interaction [13]
and visual search [20, 30, 34, 44].

CR models use reinforcement learning (RL) methods to com-
pute the optimal policies [43]. Applying RL has two prereq-
uisites. First, an environment is needed, which has a state
that the RL agent can observe, and actions that the agent can
perform to change the state. The environment is commonly a
Markov decision process (MDP), and designed to approximate
the real-world situation the real user faces. Second, a reward
function is required—a mapping from the states of the envi-
ronment to real numbers—which defines what kind of states
are valuable for the RL agent (higher rewards being favorable).
The RL algorithm finds the (approximately) optimal policy by
experimenting in the environment and updating the policy un-
til (approximate) convergence. The resulting policy—and thus
the predicted behavior—naturally depends on the parameters
of the environment and of the reward function, which have
been set by the researcher.

Overview of Menu Selection Model
We summarize here all key details of the original model of
Chen et al. [13] (Fig 4).

The environment is a menu composed of eight items, arranged
into two semantic groups of four items each, where the items
in each group share some semantic similarity. There are two
conditions for the menu: either the item is present in the menu,
or absent. At the beginning of an episode the agent is shown a
target item. The task of the agent is to select the target item in
the menu if it is present, or otherwise to declare that the menu
does not contain the target item.

The agent has ten possible actions: fixate on any of the 8
items, select the fixated item or declare that the item is not
present in the menu (quit). Fixating on an item reveals its
semantic relevance to the agent, whereas selecting an item
or quitting ends the episode. After each action, the agent
observes the state of the environment, represented with two
variables: semantic relevances of the observed menu items and
the current fixation location. The agent receives a reward after
each action. After a fixation action, the agent gets a penalty
that corresponds to the time spent for performing the saccade
from the previous location and the fixation to the new item.
If the agent performs the correct end action, a large reward is
given—otherwise an end action results in a large penalty.

The RL agent selects the actions based on the expected cumu-
lative rewards the action allows the agent to receive starting
from the current state—also known as Q-value of the state-
action pair in RL terminology. These Q-values are learned in
the training phase, over 20 million training episodes, using the
Q-learning algorithm. To select an action, the agent compares
the Q-values of each action in that state (see the Q-table in Fig
4) and chooses the action with the highest value.

Variants
Above we described one model variant reported in Chen et al.
[13]. According to the description of the observation data, no
items in the menus had more than 3 letters difference in length



Parameter Description
fdur Fixation duration
dsel Time cost for selecting an item

(added to the duration of the last fix-
ation of the episode if the user made
a selection)

prec Probability of recalling the seman-
tic relevances of all of the menu
items during the first fixation of the
episode

psem Probability of perceiving the seman-
tic relevance of menu items above
and below of the fixated item

Table 1. Parameters inferred with ABC in Studies 1-3.

[5]. To comply with this and to reduce the complexity of the
state space, we assumed that there is no detectable difference
in the length of the items. Thus we used the model variant
from Chen et al. [13] where the only detectable feature is
the semantic similarity to the target item. In Study 2 reported
below, we will explore three additions to the model and their
effect on the predictions. All model parameters inferred with
ABC, across the studies, are listed in Table 1.

EXPERIMENTS AND RESULTS
In the rest of the paper, we show with three case studies how
ABC can be used to improve the current modeling practices.
All studies use the Chen et al. model [13], and the core prob-
lem in all is inverse modeling: Given aggregate observation
data (task completion times), find the most likely parameter
values θ and their distribution, such that the predictions made
by the model agree with the observations.

1. Study 1. ABC compared to manual tuning: We demon-
strate that ABC can improve model fit by inferring parame-
ter values from data, compared to the common practice of
setting them manually based on the literature.

2. Study 2. ABC in model development: We demonstrate
how ABC helps in improving models, by fitting multiple
models to same data, exposing differences and anomalies.

3. Study 3. ABC in modeling individual differences: We
demonstrate how individual models can be fit with ABC, by
conditioning the model to individual data.

We use the same dataset as Chen et al. [13], which is a subset
of a study reported by Bailly et al. [5] and based on the study
design of Nilsen [33]. In the study, a label is shown and the
user must click the correct item in a menu with 8 elements
as quickly as possible. Items were repeated multiple times to
understand practice effects. Multiple menus were used, and
target position and absence/presence of target systematically
varied. Eye movement data were collected and processed
for fixation and saccade durations. Twenty-one paid partici-
pants took part in the study. Further details of the study that
produced the data are reported in [5].

We implemented the BOLFI algorithm in Python. Parts of the
source code were later published within an open-source library
for likelihood-free inference [24]. Running the experiments

took around one day each on a cluster computer. Further
technical details of the experiments and implementation are
described in the Appendix.

Study 1. ABC Compared to Manual Tuning
Our aim in the first study was to analyze how much we can
improve the predictions made by the model by conditioning
values of key parameters on observation data instead of the
standard practice of choosing all of the parameter values man-
ually. The case study was chosen to represent the common
setting in HCI research where only aggregate data may be
available.

We used the model of Chen et al. [13], and compared the
parameter values inferred by ABC to those set based on litera-
ture in the original paper [13]. We predicted task completion
times (TCT) and fixation durations with both models, and
compared them with observation data from [5]. For simplic-
ity, we inferred the value of only one parameter θ with ABC,
the fixation duration fdur. The rest of the model parameter
values were set to be identical with the baseline model. The
value of this parameter was conditioned on the observed ag-
gregate task completion times (TCT; combined observations
from both menu conditions: target absent—referred to as abs,
target present—referred to as pre). Chen et al. [13] set the
value of this parameter to 400 ms based on a study by Brumby
et al. [8].

Results
As shown in Figure 5, the parameter value inferred with ABC
lead to the model predictions matching better to observation
data not used for the modelling. This holds both for TCT
and fixation duration. In detail, the ground truth aggregated
TCT was 0.92 s (std 0.38 s). The manually fit model pre-
dicted 1.49 s (std 0.68 s), whereas the ABC fit model predicted
0.93 s (std 0.40 s). For predictions, we used the maximum a
posteriori (MAP) value predicted by ABC, which was 244 ms
for fixation duration (detail not shown). This corresponds to
values often encountered in e.g. reading tasks [40].

In summary, inferring the fixation duration parameter value
using ABC lead to improved predictions, compared to setting
the parameter value manually based on literature. The inferred
parameter value was also reasonable based on literature.

Observations on the Resulting Models
A closer inspection of predictions made by the models exposed
two problematic issues which led to improvements in Study
2. The first issue is that while the aggregate TCT predictions
were accurate, and all predictions with ABC were better com-
pared to manual tuning, even ABC-fitted predictions were not
reasonable when split to sub-cases according to whether the
target was present in the menu or not. This is clearly visible
in Figure 5 (rows two and three), where we notice that the
predicted TCT when target is absent is actually around four to
six times as long as the actual user behavior.

The second issue concerns the search strategies predicted by
the model. Chen et al. [13] showed that their model was able
to learn a behavior strategy, where the agent would look first
at the topmost item, and second at the 5th item, which was



Figure 5. Comparison of manual tuning to ABC inference (Study 1). Predictions made by conditioning parameter values on both aggregate-level
observed data and prior knowledge (ABC inference; blue bars in the middle column) agree better with observation data not seen by the model (orange
bars on the right column) than predictions made by setting parameter values manually based on literature (Manual tuning; blue bars in the left column).
ABC searched for parameter values that resulted in small discrepancy between the model predictions (green) and observed aggregate-level data (brown).
Left column: Manual tuning: all parameter values were set based on literature and manual tuning. Center column: ABC inference: the value of fdur
has been conditioned on observation data using ABC. Right column: Observation data (ground truth) from Bailly et al. [5]. All: Aggregated data from
both conditions. Abs: Data from when target was absent from the menu. Pre: Data from when target was present in the menu.

the first item of the second semantic group. This was seen as
a clear spike on the fifth item in the “proportion of gazes to
target” feature. However, not every attempt to replicate this
result succeeded (Fig. 6), and similar variation in predicted
strategies was observed with the ABC-fitted model as well5.

Our conclusion is that there likely exist multiple behavior
strategies that are almost equally optimal, and the RL algo-
rithm may then find different local optima in different real-
izations. This is possible, as Q-learning is guaranteed to find
the globally optimal strategy only given an infinite amount of
learning samples; with only finite samples, this is not guaran-
teed. Because of this issue with the inference of the behavioral
strategies, we do not discuss in detail the inferred strategies,
but only report results that we were able to repeat reliably.

Study 2: ABC in Model Development
We next demonstrate how ABC can be used in the model
improvement cycle, where new models are proposed and com-
pared. As a baseline, we start with the model introduced in
Study 1, to which we add features to fix the issues we ob-
served in Study 1. We show that with ABC multiple different
models can be conditioned to the same observation data, in
5 The only technical difference between the original vs. our imple-
mentation was that in the original [13] Q-learning was performed on a
predetermined set of 10,000 menu realizations, whereas we generated
a new menu for every training session. The original implementation
thus converged slightly faster, as it explored a smaller part of the state
space.

Figure 6. Study 1: Repeated execution of the Chen et al. [13] model
yields variations in search patterns. None of the three independent re-
alizations (Replication 1-3) was able to reproduce the noticeable spike
on the 5th item (i.e., the first item of the second semantic group) in the
Observation data. The bar charts illustrate average proportions of gazes
to target in search episodes, as a function of the target location. Larger
proportions indicate that targets at that location are on average found
earlier, as fewer gazes to non-target items are required.

order to compare their predictions and (compatible) parameter
estimates. Doing the same manually would be very laborious.

The model variants we propose are as follows:

• Variant 1: Chen et al. [13] model + selection latency:
The agent incurs a delay dsel when selecting an item.

• Variant 2: Variant 1 + immediate menu recognition:
The agent is able to recognize the menu based on the first
item with probability precall .

• Variant 3: Variant 2 + larger foveated area: The agent
can perceive the semantic relevance of the neighboring



items (above and below the fixated item) through peripheral
vision with probability psem.

Variant 1: We first observed that both the TCT and recorded
fixation duration are longer when the target item is present.
We hypothesized that the user might have had to spend some
time confirming her judgment of the target item and physically
making the selection using the pointer. To allow the model to
capture this behavior, we added an additional delay, dsel , for
the selection action. For example, the mathematical model of
Bailly et al. [5] implements a similar selection latency.

Variant 2: We observed that some of the users were able to
decide that the target item was not present in the menu just
using one fixation on the menu. Our hypothesis was that the
users were able to memorize some of the menus, allowing them
to naturally finish the task much faster when they recalled the
menu layout. To capture this behavior, we allowed the agent
to instantly observe the full menu during the first fixation, with
probability prec.

Variant 3: We also observed in Study 1 that the inferred num-
ber of fixations was in both cases larger than in the observation
data. The models predicted on average 6.0 fixations when the
target was absent (ground truth was 1.9) and 3.1 when target
was present (ground truth was 2.2). Our hypothesis was that
the user might have observed the semantic relevance of neigh-
boring items using peripheral vision, allowing her to finish
the task with a smaller number of fixations. The model of
Chen et al. [13] had a peripheral vision component but it only
applied to size-related information (shape relevance). Our
hypothesis is also justified by the experiment setup of Bailly et
al. [5], where the neighboring items do fall within the fovea (2
degrees), thus making it physiologically possible for the user
to observe the semantic relevance of the neighboring items.
To capture this behavior, we allowed the agent to observe the
semantic relevance of the items above and below the fixated
item in the menu with probability psem (independently for the
item above and below).

Implementation: In order to be able to do inference on these
new parameters, we only needed to make small additions to
the simulator code: add an interface for setting the values of
these new parameters and implement the described changes
in the model. On the ABC side, we only described the names
and priors of the new parameters, and increased the amount
of locations where to simulate. More locations are justified as
each new parameter increases the size of the parameter space
that needs to be searched. We also noticed in Study 1 that the
models were not able to replicate the behavior well in both
menu conditions (target present, absent) at the same time. For
this reason, we make a small adjustment to the discrepancy
function, so that the TCT is compared in both menu conditions
separately. This should allow the models to better replicate
the full observed behavior. Further details are provided in the
Appendix.

Results
The predictions made by the different models, compared to the
observation data, are visualized in Figure 7. With increased
model complexity, we also see increasing agreement of the

predictions with the observation data. This is partly expected,
as more complex models are in general able to fit any dataset
better. However, with the use of priors, we are able to regular-
ize the parameter values to reasonable ranges, and thus avoid
over-fitting the models to the data.

The baseline model was not able to predict the behavior of
the user very well on many of the variables. The MAP value
for fdur (fixation duration) was 210 ms. The TCTs predicted
by the baseline model were [1500 ms (abs), 770 ms (pre)],
whereas the ground truth was [490 ms (abs), 970 ms (pre)].
The predicted fixation duration was 210 ms, which is still rea-
sonable, although on the low side, compared to the observed
means [230 ms (abs), 420 ms (pre)]. Furthermore, the pre-
dicted number of fixations on items on the menu was [6.0
(abs), 3.1 (pre)], whereas the users only performed [1.9 (abs),
2.2 (pre)] fixations.

Variant 1 improved predictions over the baseline. The MAP
value for normal fdur was 170 ms and for dsel (selection delay)
320 ms. The predicted TCTs were [1300 ms (abs), 1000 ms
(pre)], which is already a very reasonable estimate when target
is present, although still far from the truth when the target
is absent. The predicted fixation durations (now with the
selection delay factored in) were [170 ms (abs), 270 ms (pre)],
which is an improvement over the baseline in the present
condition, but not on the target absent condition. The predicted
numbers of fixations were nearly identical to baseline.

Variant 2 again improved predictions over both the baseline
and Variant 1. The MAP value for fdur was 290 ms, for dsel
was 300 ms, and for prec (probability of recall) was 87 %. The
predicted TCTs were [570 ms (abs), 980 ms (pre)], which is
the first time we have been able to predict a lower TCT for the
target absent case. However, the variation in TCT when target
is absent is quite large; the predicted standard deviation was
660 ms, whereas the ground truth was 300 ms. The predicted
fixation durations were [290 ms (abs), 430 ms (pre)], which is
already close to the ground truth in the target present condition.
The predicted numbers of fixations were [1.8 (abs), 2.1 (pre)],
which is a considerable improvement over previous estimates.

Variant 3 provided still slight improvements over previous
results. The MAP value for fdur was 280 ms, for dsel was
290 ms, for prec was 69 %, and for psem (the probability of
observing the semantic similarity with peripheral vision) was
93 %. The predicted TCTs were [640 ms (abs), 1000 ms
(pre)], which is slightly further from the observations than
with Variant 2. However, the variation in the distributions is
closer to observed values than with Variant 2 (the discrepancy
measure led ABC to minimize both the difference in mean and
in standard deviation at the same time, details in Appendix).
The predicted fixation durations were similar as with Variant 2.
The predicted numbers of fixations were [2.0 (abs), 2.2 (pre)],
which is slightly better than with Variant 2.

We conclude that we were able to fit multiple model variants to
the same observation data, and make meaningful comparisons
between the different models because of this. We observed
that the quality of the predictions increased when we added
our additional assumptions to the model, which was expected



Figure 7. Study 2: ABC exposes how changes to the model (Variants 1-3) result in changes to the predictions when parameter values are conditioned to
empirical data. Baseline: Same model as in Study 1, but now conditioned on observed behavior in both target conditions (absent, present) at the same
time. Variant 1: Selection delay feature added to baseline (parameter dsel ). Variant 2: Menu recall feature added to Variant 1 (parameter prec). Variant
3: Peripheral vision feature added to Variant 2 (parameter psem). Observation data: Same as in Study 1. Reported results are with the MAP parameter
values. Color coding: Same as in Figure 5. Abs: Data from when target was absent from the menu. Pre: Data from when target was present in the menu.

as the models became more flexible, but also provided evi-
dence that these features probably reflect actual user behavior
as well. Furthermore, ABC was found useful in hypothesis
comparison, as we avoided manually trying out a large number
of different parameter values manually to find values that lead
to reasonable predictions.

Study 3. ABC and Individual Differences
Most modeling research in HCI aims at understanding general
patterns of user behavior. However, understanding how indi-
viduals differ is important for both theoretical and practical
reasons. On the one hand, even seemingly simple interfaces
like input devices show large variability in user behavior. On
the other hand, adaptive user interfaces and ability-based de-
sign rely on differentiating users based on their knowledge
and capabilities.

Our final case looks at the problem of individual differences
in inverse modeling. In Study 3 we select a group of users
and fit an individual model for each of these users. We then
compare how good predictions these individual models are
able to produce, compared to the same model fit with the data
from all of the users in the dataset (population level model).

We selected a representative set of 5 users for Study 3. We
first selected all users from the dataset of whom there were 15
or more observations in each menu condition (target absent,
present), leaving 11 users. We then ordered the users based
on their difference in TCT to population mean, summed from
both menu conditions. To get a good distribution of different
users, for this experiment we selected the users who were the
furthest (S8), third most furthest (S5), and fifth most furthest
away (S23) from the population mean – as well as the users
who were the closest (S19) and third most closest (S18) to the
population mean.

The model we used in this study, for both individual and
population level modeling, corresponded to Variant 3 from the

previous section. To simplify the analysis, here we only infer
the values of two of the parameters for each user, keeping
the rest fixed. The inferred parameters were prec and psem.
Based on the Study 2, it seemed to us that there was less
variation in fdur and dsel , whereas the use of memory and
acuity of peripheral vision could plausibly vary more between
individuals. We fixed the value of fdur to 280 ms and dsel to
290 ms, according to the MAP estimate in Study 2.

For each of the selected users, we collected all of the ob-
servations of that user from the dataset, and conditioned the
parameter values of the individual model for that user on that
small dataset. The parameter values of the population level
model were the same as inferred in Study 2 for Variant 3. The
accuracy of the predictions made for each user by their indi-
vidual model was compared with the predictions made by the
population level model. In the comparison, we considered the
predicted TCTs and numbers of fixations at each condition to
the observed values, and report the magnitude (absolute value)
of the prediction errors.

Results
The predicted MAP parameter values are collected in Table 2.
The individual model parameter values deviate around ±10
percentage points from the population level model parame-
ter values, which is a reasonable magnitude for individual
variation.

We calculated the magnitude of prediction errors for all of the
models by taking the absolute difference in model predicted
means and observed data means for each feature. The predic-
tion errors of the population level model on the population data
and on individual user data are shown in Figure 8. Overall,
the prediction errors with a population level model tend to be
larger for individual users than they are for the whole popu-
lation. This shows that population level models that are good
for explaining population level dynamics may perform badly



Model prec psem

S5 61 % 89 %
S8 54 % 87 %
S18 70 % 96 %
S19 76 % 91 %
S23 73 % 92 %
POP 69 % 93 %

Table 2. MAP estimates of parameter values for individual models (S5,
S8, S18, S19, S23) and the population level model (POP) in Study 3.

when used for explaining subject level dynamics. Furthermore,
as could be expected, prediction errors with a population level
model tend to be larger for users who differ more from the pop-
ulation mean. This presents a clear motivation for developing
individual models, as they could help to understand subject
level dynamics, especially regarding users who differ from the
population mean.

The prediction errors of the individual models on individual
user data are shown in Figure 9. Overall we observe a rather
consistent quality in the predictions made by the individual
user models. The only exception is user S8, who was the
furthest away from the mean. It is likely that user S8 might
have performed the task overall in a very different way from
the rest of the users. For example, the number of fixations
taken by this user when target was absent was 3.1, but only 2.7
when the target was present. This could indicate that the user
was unusually careful in examining the menu before declaring
that the target was not present.

Improvements in prediction error magnitude when changing
from population level model to an individual model are shown
in Figure 10. The overall trend is that individual user models
improve prediction quality, although not always in all parts.
With most users the prediction errors decreased in at least
three of the four predicted features.

We conclude that by using ABC we were able to fit CR models
to data from individual users, and that the resulting individ-
ual models were able to produce better predictions than a
population level model fitted to the whole participant pool.
Performing this modeling task would not have been possible
with just choosing the values based on literature, as such infor-
mation tends to only apply for population level models. On the
other hand, choosing the parameter values manually for each
user would have required a considerable amount of manual
labour, which ABC was able to automate. Moreover, inverse
modeling helped us expose a behavioral pattern that was not
well explained by the model (user S8).

DISCUSSION AND CONCLUSION
We have demonstrated that ABC is applicable for inverse mod-
eling of computationally rational models of complex human
behavior based on aggregate behavioural data.

We highlighted advantages ABC has over alternative methods
for inferring model parameter values in HCI. First, the method
is applicable for a wide range of models, as it relies on only
few assumptions. Second, the parameter value estimates are
conditioned both on the observation data, as well as any prior

Figure 8. Study 3: Leftmost: Prediction error for population level data
with population level model (POP). Right: Prediction errors for individ-
ual users (from most to least similar to population mean) with popula-
tion level model. Unit of TCT is 100 ms, unit of number of fixations is 1
fixation.

Figure 9. Study 3: Prediction errors for individual users (from most to
least similar to population mean) with models conditioned on observa-
tions of the individual user. Unit of TCT is 100 ms, unit of number of
fixations is 1 fixation.

Figure 10. Study 3: Decrease in prediction error when using individual
models (Figure 9) instead of the population level model (Figure 8) for
individual users (from most to least similar to population mean). Unit of
TCT is 100 ms, unit of number of fixations is 1 fixation.

knowledge the researcher might have of the situation. This
way over-fitting the model to the observation data may be
avoided, which could happen if we had only tried to maximize
the ability of the model to replicate the data. Third, the in-
ference process produces a full posterior distribution over the
parameter space, instead of only a point estimate, allowing for
better analysis of the reliability of the estimates.

In Study 1 we demonstrated that ABC was able to achieve
better model fit compared to setting the model parameter value
based on literature and manual tuning. We also identified
problems with the existing state-of-the-art model for visual
search [13], related to both the quality of the predictions and
convergence issues.

In Study 2 we demonstrated the applicability of ABC in model
comparison by fitting four different models to the same dataset
and comparing the resulting predictions and inferred model
parameter values. We also proposed improvements to the
existing state-of-the-art model, and demonstrated that they
resulted in improved quality of predictions.

In Study 3 we demonstrated that with ABC it is possible to
fit one of the models from Study 2 to data collected from a
single individual, thus creating an individual model. We fur-



ther demonstrated that the predictions made by the individual
models were better compared to a model fit to a large amount
of population-level data.

Together, these contributions help address a substantial prob-
lem in understanding interactive behaviour that has been evi-
dent in HCI and Human Factors for more than 15 years [27].
The problem is how to estimate model parameter values given
the strategic flexibility of the human cognitive system [22, 27,
28]. One of the consequences of strategic flexibility has been
to make it difficult to test theories of the underlying informa-
tion processing architecture; because behaviour that is merely
strategic can be mistakenly taken as evidence for one or other
architectural theory or set of architectural parameters [22].
ABC, and inverse modeling methods in general, addresses this
problem by establishing a principled mathematical relation-
ship between the observed behaviour and the model parameter
values.

In the future, inverse modeling might provide a general frame-
work for implementing adaptive interfaces that are able to
interpret user behavior so as to determine individual prefer-
ences, capabilities, and intentions, rather than merely mapping
actions directly to effects. In summary, we consider ABC to
provide ample opportunities for widespread research activity
on both HCI applications, and as a core inference methodology
for solving the inverse problems arising in research.
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APPENDIX: ABC BOLFI IMPLEMENTATION
We implemented BOLFI in Python with the following details.
We used a Gaussian process (GP) model from the GPy Python
library to model the discrepancy. The kernel was Matern 3/2
with variance 0.01, scale 0.1, and noise variance 0.05. The
first Ninit sample locations were drawn from the quasi-random
Sobol sequence (equal to the number of CPU cores allocated
for the job). The remaining sample locations were decided as
follows. We created a function that computed the lower confi-
dence bound (LCB) for the GP: LCB(x) = µGP(x)−bσGP(x).
We used b = 1.0. For asynchronous parallel sampling, we
needed a way to acquire multiple locations that were reason-
able, but also sufficiently well apart. For this purpose we
created a function that calculated the sum of radial-basis func-
tion kernels that were centered at the locations P currently
being sampled: R(x) = ∑p∈P aexp((x− p)2/l). We used a =
0.04, l = 0.04. The acquisition function for the next sample
location was A(x) = minx[LCB(x)+R(x)]. Additionally, there
was a 10 % chance of the location being drawn from the prior
instead of the acquisition function.

Study 1: The model was trained with Q-learning for 20
million training episodes, after which we simulated 10,000
episodes for visualizing the behavior predicted by the trained
model. The observation data has the target item absent in 10 %
of the sessions, but in the Chen et al. paper [13] it was assumed
that it was absent in 50 % of the cases. We tried both splits
in training data (10% and 50%), but did not find a large over-
all difference in the results. In the subsequent experiments,
we also used the 10 % split, as it might remove a possible
source of bias. Our prior for fdur was a truncated Gaussian
distribution with mean 300 ms, std 100 ms, min 0 ms, max
600 ms. The prior was set with the intuition that values be-
tween 200 ms and 400 ms should be likely (± 1 std), whereas
values between 100 ms and 500 ms could still be accepted
if the data really supported those values (± 2 std). BOLFI
computed discrepancy at 100 locations using 40 CPU cores.
Of the 10,000 simulated episodes, we only used the first 2,500
for calculating the discrepancy. This was done as it is more
sensible to compare datasets of similar size. Altogether the
model fitting took 20 h (in wall-clock time), each individual
sample taking 6 h. The discrepancy was based on the mean
and standard deviation of the aggregate task completion time.
It was constructed so that it would fit the mean accurately
(L2-penalty) and the standard deviation with lower priority
(L1-penalty). The formula was:

d = a× (meanobs−meansim)
2 +b×|stdobs− stdsim|,

where we used a = b = 10−6 for a reasonable scale and the
used feature was the aggregate TCT.

Study 2: Our prior for dsel was a truncated Gaussian distribu-
tion with mean 300 ms, std 300 ms, min 0 ms, max 1000 ms.
300 ms was selected as our initial best guess for the delay,
as the second peak in observed fixation duration when target
was present (Figure 5) was around 600 ms and we thought it
likely that the normal fixation duration was around 300 ms.
However, as we had relatively high uncertainty about this,
we chose a quite flat prior. Our prior for prec and psem were
uniform distributions with [min 0, max 1]. Uninformative
priors were used as we were uncertain about the possible true
values of these parameters. The discrepancy was the average
of d(TCTpre) and d(TCTabs). As the parameter space sizes
varied, we chose the number of samples and CPUs for each
case separately. Baseline: 100 samples, 40 CPUs (20 h). Vari-
ant 1: 200 samples, 80 CPUs (16 h). Variant 2: 400 samples,
80 CPUs (30 h). Variant 3: 600 samples, 100 CPUs (37 h).

Study 3: The prior for prec was a truncated Gaussian distribu-
tion with [mean 69 %, std 20 %, min 0 %, max 100 %]. The
prior for psem was similar but with mean 93 %. The priors
were based on the knowledge gained from Study 2, and thus
centered on the MAP estimate of Variant 3, but were reason-
ably flat to allow for individual variation. The discrepancy
was the same as in Study 2. Out of the total 10,000 simulated
sessions, we used the first 200 for calculating the discrepancy
to match the individual dataset sizes. For each of the users, we
computed 200 samples using 60 CPUs (22 h each).
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