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For graphical user interface (UI) design, it is important to understand what attracts visual attention. While previous work on saliency

has focused on desktop and web-based UIs, mobile app UIs difer from these in several respects. We present indings from a controlled

study with 30 participants and 193 mobile UIs. The results speak to a role of expectations in guiding where users look at. Strong bias

toward the top-left corner of the display, text, and images was evident, while bottom-up features such as color or size afected saliency

less. Classic, parameter-free saliency models showed a weak it with the data, and data-driven models improved signiicantly when

trained speciically on this dataset (e.g., NSS rose from 0.66 to 0.84). We also release the irst annotated dataset for investigating visual

saliency in mobile UIs.
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1 INTRODUCTION

For a graphical object, the notion of visual saliency refers to the ability to attract visual attention, for the given visual

properties of that object and the rest of the display [4]. In practice, attention is drawn to visually unique stimuli.

Through use of color and boldface, the three words above stand out relative to the rest of this paragraph. Regions and

objects that are unique in terms of visual primitives ś such as size, color, shape, orientation, or motion ś tend to stand

out [32, 64]. The biological basis for this phenomenon is well-known [59]: saliency emerges in parallel processing of

retinal input at lower levels in the visual cortex [61]. From mature-level research on saliency has sprung a wealth of
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applications in visual computing, scene classiication [53], video summarization [37], image segmentation [40] and

compression [45], object detection [29], and other areas. Nevertheless, predictingwhere people look at is paradigmatically

more ambiguous than typical computer vision tasks such as image segmentation or object detection, since users weight

visual features diferently when deciding where to look [68].

User interface (UI) designers examine visual saliency to understand what users will be drawn to when seeing a

display, and to avoid designs that appear cluttered [48, 54]. Inexpensive commodity eye-trackers have made empirical

data collection more popular. However, while some indings have been reported for desktop- and web-speciic UIs, no

published empirical research on visual saliency has focused on mobile ones. This is alarming, sicne these devices are

among today’s most prevalent computing terminals. To our knowledge, the only study in this area is one by Gupta

et al. [17], who used crowdsourced data to validate computational models on mobile UIs, but did not report factors

afecting saliency.

Xu et al. [65] (with follow-up by Ni et al. [42]) investigated touch saliency for mobile devices as a method estimating

saliency from touch points. However, touch points are not tantamount with visual saliency. Moreover, the experimental

stimuli used were outdoor scenes, not UIs. Later on, Xu et al. [66] predicted saliency for desktop UIs, taking as input the

users’ mouse and keyboard actions, but this setup cannot be transferred to mobile UIs. While Shen et al. [52] used an

ad-hoc model for predicting visual saliency of webpages, webpages as viewed on a laptop computer difer from mobile

UIs in several respects; see Figure 1.

15" display 6" display

1600x900 px, 16:9 aspect ratio 375x812 px, 9:20 aspect ratio

Fig. 1. A UI for a mobile device can difer in visual features’ distribution from the equivalent UI on a laptop computer. Shown here are
the screen resolution, aspect ratio, and color distributions (according to https://www.canva.com/colors/) of a sample webpage. Red
circles represent areas of foveal vision in viewing the UIs from a 60 cm distance.

While there have been many indings on visual saliency in non-mobile UIs ś e.g., related to color bias, face bias,

horizontal bias, etc. (see ‘Related Work’ section) ś they cannot be expected to hold automatically for mobile UIs, for

several reasons: (1) Mobile displays are much smaller than desktop or laptop displays, which means that, everything else

being equal, fewer objects compete for attention. (2) Mobile devices span a much smaller ield of view. Thus, graphical

objects tend to lie closer to the fovea. (3) Mobile displays are often vertically oriented, which entails less use of the

horizontal dimension of peripheral vision. (4) Designers create UI designs speciically for mobile devices, and mobile

https://www.canva.com/colors/
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UIs may feature a diferent distribution of visual primitives. For example, interactive elements such as buttons are

relatively large in comparison to their desktop versions. (5) Users may have learned diferent strategies for looking at

mobile UIs, relecting the visual characteristics or underlying tasks involved. As the viewport and the distribution of

visual primitives change, so does saliency. Figure 1 shows an example comparison of screen size and color distribution

between a typical laptop and mobile device. In sum, what may be salient in a desktop UI may be less or more so in its

mobile analogue.

Computational models too need to be reassessed for this special context. In recent decades, plausible and accurate

computational models of visual saliency have emerged. Early (łclassicž) models [25, 46] were based on biologically

motivated visual primitives (color, shape, etc.), followed by centerśsurround operations highlighting local changes,

which were combined into a łconspicuity mapž [19, 25]. In the last ive years, data-driven models, most recently using

deep learning, have surpassed these in predictive accuracy [20]. However, deep learning models are trained on particular

visual features and may fail when the underlying distribution changes. Critical validation of computational models

is important, since they could play a strong role in interface design [48]. We see two main uses of these models: An

inverse approach starts with behavioral data, such as scrolling or cursor movement logs, and produces heatmaps of the

UI regions that are most likely attended [66]. A forward approach takes a display as input and produces a ixation map

depicting predictions as to the most salient areas [11]. Using a sound computational model of visual saliency, designers

can make changes to a UI layout and predict the efects without having to run user studies.

This paper presents the irst empirical investigation of statistical efects of visual saliency in mobile UIs and validation

of several well-known computational models, including state-of-the-art deep learning models, from high-quality eye-

tracking data. We collected the data for a large number of representative (stock) mobile interfaces viewed from a

distance typical for a mobile device, using a high-idelity stationary eye-tracker that is calibrated regularly to minimize

drift. We studied the Chinese mobile ecosystem because it is currently the largest one,1 though our results should be

easy to replicate in other cultures, given that bottom-up saliency is a general phenomenon of attention. In summary,

the contribution of this paper is threefold: (1) we assess known saliency-related phenomena with mobile devices,

among them biases toward learned locations and features; (2) we report several validation metrics for models of visual

saliency, showing that state-of-the-art deep learning models can improve signiicantly in accuracy when trained on a

mobile-speciic dataset; and (3) we release the irst dataset for visual saliency of mobile UIs, which includes ixation

data on 193 UIs annotated with per-element labels and bouding boxes.

2 RELATEDWORK

Visual saliency is the perceptual quality of some objects or regions attracting attention by standing out from the rest of

the view [25]. Saliency has a role in the control of visual attention, especially in picking the next ixation points [24, 60].

Below, we review the empirically known efects of saliency, which we assessed in the case of the new dataset, and the

state of computational modeling in this area.

2.1 Empirical evidence on saliency

What is salient is afected by both bottom-up and top-down factors. The former are characterized by uniqueness in

visual primitives of the stimulus, such as color, shape, size, orientation, or motion. An object that is unique in these

respects tends to draw attention. For instance, in an image full of green tones and green-illed shapes, if a color such as

1 See e.g. https://www.statista.com/topics/1416/smartphone-market-in-china/
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red appears, observers tend to look at the red shape [36]. Top-down factors include task goals and expectations that are

based on the learned statistical distribution of features; see e.g., [50]. For example, in many natural scenes that show a

horizon, most information lies close to the horizontal medial line, which also attracts attention. When the visual task

or content changes, both bottom-up and top-down factors may change. Therefore, a saliency-related empirical efect

reported for one context does not trivially carry over to another.

Prior research looking at saliency of natural scenes has found several replicated efects, or biases, which we revisit in

this paper:

1. Center bias: Studies have reported a bias toward looking at the center of the screen when viewing natural

scenes [22, 43]. This is supposedly driven by the statistical distribution of image features in such scenes [55, 58].

However, the efect has been replicated with other media, such as video [38], text [47], and single objects [43]. Whether

this holds for mobile UIs is unclear, since much of their most informative elements lie in the upper half of the UI. That

said, gazing in the middle might yield the best overview of the UI for peripheral vision.

2. Horizontal bias: In looking at natural images featuring objects, ixations tend to be distributed more horizontally

than vertically [43, 44]. Again, mobile UIs difer from natural scenes in that they organize the information vertically,

not horizontally. Therefore, we might see this efect weaken.

3. Color bias: Thus far, color brightness and contrast have been counted among the primary features driving bottom-

up saliency [13, 18]. Mobile UIs typically contain colorful icons and images that may be perceived as highly salient;

therefore, we would expect this efect to hold.

4. Text bias: Perhaps due to the importance of textual materials in lived environments, a bias toward textual elements

has been reported [23, 63]. When an observer is told not to look at text, initial ixations take longer [8]. In mobile UIs,

text plays a similarly important role, also in icons, labels, headings, logos, etc. This efect may, therefore, still exist.

5. Face bias: Perhaps because of evolutionary advantages, attention is drawn to human faces [8, 29]. Initial ixations

have been found to take longer when the user is asked to avoid faces [8]. Mobile UIs often include graphics that may

contain faces. However, faces play a less informative role in mobile UIs, because they are typically not interactive

elements. Hence, this efect might be expected to decrease or disappear.

2.2 Computational saliency models

Given a stimulus image, a computational model of visual saliency produces a density map showing the amount of

conspicuity ś that is, how much a pixel stands out against other pixels. In this paper, we compare two model types.

(1) Bottom-up models, or stimulus-driven, are based on visual primitives such as color, size, and shape [4, 5]. These models

can be expected to work well in the case of a user shown a UI for the irst time for free viewing [14, 25]. (2) Data-driven

models are models that, though make predictions based on image features [3], are trained using eye-movement data and

may have architectural assumptions inspired by bottom-up models. They can therefore better capture domain-speciic

phenomena, such as variations in viewing strategies or expectations as to where the most interesting elements are.

They may better capture visual statistical learning, or how people learn to predict where to look on the basis of learned

feature distributions [50]. However, while deep-learning-based data-driven approaches are currently outperforming

stimulus-driven models with natural scenes, they fall short in terms of ability to capture some pop-out efects in

synthetically generated patterns [21]. Given the strengths and weaknesses of the two approaches, we decided to

investigate both. In the łComputational Modelingž section, we describe the models chosen for our experiments and

compare their performance.
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2.2.1 Applications on graphical UIs. Despite saliency being one of the better-known aspects of the human visual system,

designers often use rules of thumb instead of theory or rely on experimental evaluations [48, 54]. Computational

saliency models could be beneicial, because they can make predictions for the designer about where users are likely to

ixate within a given UI. They can be used, for example, in delving into the quality of a given design or as a quick way

to facilitate comparisons between designs. Without necessitating dedicated user studies, they can simulate how a user

will attend new, unseen layouts.

Still, the abundant literature on saliency modeling that predicts where humans might look within a scene contains

only a few studies of graphical UIs. The irst computational visual saliency model to predict human attention, with

particular regard to webpages, was proposed by Shen et al. [52]. They added several feature maps (text and face detectors,

positional bias correction, etc.) to the classic ITTI saliency model [25]. Even with ad-hoc training, they could not achieve

competitive performance (correlation with ground truth was 0.45). Xu et al. [66] proposed a bottom-up approach that

was speciically designed with WIMP graphical user interfaces in mind. The model takes information about the UI

alongside users’ mouse and keyboard actions as input to predict joint spatiotemporal attention maps. Regrettably, this

setup cannot be applied for investigating saliency in mobile UIs, where no keyboard or mouse is available. Vidyapu

et al. [62] were interested in predicting visual attention scanpaths for webpage images and did not investigate other

webpage elements, such as headers, navigation menus, and paragraphs of text. Finally, as mentioned earlier, Gupta et al.

[17] compared stimulus- and data-driven models against crowdsourced mobile eye-tracking data, concluding that a

data-driven deep learning model has the highest it. However, they selected the elements in the top 20% for saliency as

their ground-truth dataset, which makes prediction less challenging (we predict saliency for the whole UI).

2.3 Visual impression, importance, and cluter

HCI research has looked also at constructs that come close to saliency but are not quite the same. Visual impression

refers to perceived aesthetics of a graphical UI formed during free viewing. This is typically measured via rating scales,

with results reported for both desktop [33] and mobile interfaces [39]. Visual saliency is a construct related to the

control of visual attention, not regarding aesthetics or design quality. A concept more closely related to saliency is that

of visual importance. Bylinskii et al. [7] extended a pre-trained neural network [51] for predicting which regions in a

graphic design are felt to be more important. Importance was measured by means of cursor exploration of a blurred

page. However, a łpoor man’s eye-trackerž [10], which involves an element of introspective judgment of importance, is

not a good proxy for gauging visual saliency [56]. Finally, research on visual clutter is directly motivated by theories of

saliency. The work of Rosenholtz [48] shows how models of visual saliency can be exploited to compute indices of how

cluttered a display is perceived to be.

3 METHOD

The design of our experiment follows earlier studies on desktop settings [52], which we accordingly adapt to our mobile

setup [35]. We collected a large set of representative mobile interfaces, which in the study were viewed from a distance

resembling that of mobile use. The set of mobile UIs is varied and has a rich distribution of diferent element types. We

used a carefully calibrated high-idelity eye tracker to collect gaze data during free viewing. Note that an alternative

setup, for example including walking (e.g., on a treadmill or a closed circuit) would mainly add nuisance factors that

would detract from the quality of data and would require signiicantly larger sample sizes.
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Fig. 2. Sample UIs used in the experiment. Our dataset contains a total of 193 screenshots.

3.1 Participants

Thirty participants (12 male, 18 female) were recruited via mailing lists and announcements in social media. The average

age was 25.9 (SD=3.95). The participants had normal vision (8) or corrected-to-normal-vision (22). Twenty of the 22

wore glasses and the remaining two wore contact lenses. No participant was color blind. All participants were native

Chinese speakers, the language used in the mobile interface dataset (see below).

3.2 Materials

We collected a dataset comprising 193 UI screenshots of diferent mobile apps from Android and iOS devices (vendors:

Apple, Huawei, Oppo, and Vivo). The screenshots were taken from mobile stock applications, available via application

markets. All screenshots were shown in portrait mode, since all apps were designed to be operated in portrait orientation,

and scrolled up, to mimic what any user would see upon launching any app. Particular care was taken to cover a wide

range of commonly used UIs, including e.g. home screen, settings, gallery, camera, contacts, music, recorder, calendar,

calculator, notepad, ile explorer. All UIs used simpliied Chinese language, though they are also available in other

languages.

Figure 2 illustrates some of these screenshots. More examples are given in the Supplementary Materials. The

screenshots were taken on diferent high-deinition smartphones, and thus had diferent screen resolutions: 1242x2208

(Apple iPhone 8 plus), 1080x2340 (Huawei P30), and 1080x2160 (Oppo R11s, Vivo X20). Upon presentation in the

experiment, they were resized to the lowest common resolution (1080x2160), scaled down 35% so that they could it

in a Full HD monitor (1920x1080), and centered on the screen which had a black background. No distortion artifacts

appeared after resizing. This allowed us to display all UIs to the users regardless the actual contrasts and pixels densities

(e.g. Retina display on the iPhone) of the diferent smartphones. Figure 3 shows one of these screenshots used as

experimental stimuli.

3.2.1 Element-level segmentation. We also manually segmented and labeled UI elements on the screenshots to form

an element taxonomy. For this, we followed existing design guidelines and previous research [1, 16, 34, 41, 49]. The

taxonomy was determined by two human coders, through a consensus-driven, iterative process. Several commonly-used,

human-perceptual level UI element categories were identiied, reined, re-categorized, and inally reviewed by academic

researchers and industry experts. The inal version is summarized in Table 1 and more thoroughly in the Supplementary



Understanding Visual Saliency in Mobile User Interfaces MobileHCI ’20, October 5ś8, 2020, Oldenburg, Germany

Materials. The ine-grained semantic information on elements permits detailed analyses of how UI elements may afect

visual saliency.

3.3 Task and Experimental Design

The task was free-viewing a set of mobile UI screenshots. Each UI is shown for 3.5 seconds, informed by previous work

[52] that noticed that ixations start to diverge after 3 s. Then there is a blackout period of 1.5 s before auto-advancing

to the next trail, which we found to be an adequate tradeof while avoiding visual fatigue. The order of the stimulus UIs

was randomized per participant.

3.4 Apparatus

We used the SMI RED250 eye-tracker, which has a sampling rate of 250Hz and an accuracy of 0.4 degrees. A stationary

eye-tracker ensures very high quality of data, impossible to achieve presently with mobile trackers. We used the

SMI Experiment Center software to implement the experimental design, calibrate the eye-tracker to each participant,

compute the ixation data, and automate the administration of visual stimuli. Then we used SMI BeGaze software to

save and export the recorded data. Besides ixations data, the software generates gaze paths and heatmaps. The desktop

monitor was 24.5ž wide and had full HD resolution (1920x1080).

3.5 Setup

Participants sat comfortably in front of the eye-tracker, see Figure 3. The height of the desk was adjusted to the height

that best suited each individual. We advised participants not to lean toward the monitor. We corrected for screen

distance and the size of screenshot stimuli according to Long et al. [35], who reported that the mean viewing distance to

a mobile phone is 29.2 ± 7.3 cm. Then, considering that the physical size of the displayed stimuli is roughly twice larger

than it is on a mobile screen, the distance between participants’ eyes and the screen was kept within the 60ś70 cm

range in our experiment. Therefore, our setup approximates well the deining real-world parameters afecting the data.

3.6 Procedure

At the beginning of the experiment, participants were told about the goals of the study and were provided with informed

consent. The eye-tracker was calibrated for each participant using the usual 3x3 point grid.

Each participant was exposed up to three batches of 60 mobile UI screenshots each, to avoid visual fatigue. They

were told to look at each UI screenshot without any prescribed aim (free viewing task), since asking users to search for

a particular goal would be afected not only by saliency but also by expectations, location memory, search strategies,

etc. As previously hinted, screenshots were shown in randomized order for 3.5 seconds, followed by 1.5 seconds of

blank screen. The software automatically advanced to the next UI screenshot, until the end of the batch. After this,

participants could take a rest as long as they needed and then were asked to either proceed with the next batch or inish

the experiment. Nineteen users completed the three batches, ten users completed two batches, and one user did only

Icon Header Text Text button Text group Label Image Card

Popup Dialog box Multi-tab Bottom bar Switch Slider Date picker Search bar

Table 1. Taxonomy used for element-level segmentation of UI elements in our mobile UI dataset. See the Supplementary Materials
for examples of each element type.
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Fig. 3. Experimental setup, depicting (1) the monitor where the UIs were displayed and (2) the eye-tracker. The keyboard was only
used by the experimenter. The inner diagram (b) illustrates how our seting preserved the viewing angle of a mobile scenario.

one batch. A batch is 5min long and the average session lasted 13min. Each UI was assessed by 24 participants on

average (min 16, max 29).

To help the participants get familiarized with the experimental procedure, a warm-up session was always conducted

before starting the actual data collection. Participants were allowed to talk with and ask questions to the experimenter

during the warm-up session. Four UI screenshots were used in the warm-up session, which were not shown in the

actual experiment.

3.7 Data preprocessing

Fixations that happened outside the viewport of the mobile UI (8% of the ixations) were not included in the following

analyses. The dataset we release includes the raw data.

4 RESULTS

The data permit revisiting the phenomena found in studies with natural scenes, discussed above.

4.1 Efect of location

We observed a strong location bias. Figure 4(a) shows the spatial distribution of eye ixations across the quadrants

of the mobile display. The top-left quadrant (Q2) attracted the most ixations (43.3%). Quadrants 1 (top right) and 3

(bottom left) together attracted about as many as Q2. Quadrant 4 showed clearly the fewest ixations (13.1%).

The omnibus test revealed a statistically signiicant diference between the average number of ixations per user

and UI for each of the quadrants: χ2
(3,N=1347)

= 357.65,p < .001,ϕ = 0.515. Efect size ϕ suggests a high practical

importance of the diferences [31]. We then ran Bonferroni-Holm corrected pairwise comparisons as post-hoc test

and found that Q2 attracted signiicantly more ixations than any other part of the UI, followed by the top right (Q1),

bottom left (Q3), and bottom right (Q4). No statistically signiicant diference was found between Q1 and Q3 (p > .05).

All other comparison results were found to be statistically signiicant (p < .001).
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Fig. 4. Efects of fixation location (a) and color brightness (b) on saliency. One can see that fixations happen oten in brighter colors
and are highly skewed toward Q2; i.e., there is no clear horizontal or center bias. The thick dashed lines (a) denote the middle of the
mobile screen along the X and Y axis.

4.1.1 Summary. Had there been a horizontal bias, we would have expected to see Q2 vs. Q1 and/or Q3 vs. Q4 difering

markedly in their proportion of ixations. If there had been a center bias, we should have seen a more equal distribution

among the quadrants. Given the observations made, we conclude that, in contrast, the data suggest a strong top-left

location bias.

4.2 Efect of colors

We did not observe an efect of color brightness. We started by checking whether the colors presented and those ixated

on show the same distribution. Figure 5 shows the 32 most prevalent colors in the original UIs and the top 32 colors by

number of ixations. Comparison suggests that brighter colors may attract more attention than darker colors.

To investigate whether a reliable efect exists, we computed the pixel brightness values by using sRGB Luma

coeicients (ITU Rec. 709) [2], which relect the corresponding standard chromaticities, and compared the distribution

of ixation and non-ixation brightness values. Figure 4(b) shows the data. Bartlett’s test of homogeneity of variances

showed non-signiicance (T = 0.392,p = .531,d = 0.36), suggesting that brighter colors do not attract signiicantly

more ixations than darker ones.
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4.5% 4.2% 3.9% 3.9% 3.8% 3.2% 2.4% 1.0%

(a) Color distribution of the pixels displayed

11.6% 6.2% 5.7% 4.3% 3.8% 2.8% 2.2% 0.7%

(b) Color distribution of the pixels ixated on

Fig. 5. Colors displayed vs. those fixated upon, sorted by frequency. Although brighter colors tend to receive more atention, we
found no significant diference.

4.2.1 Summary. We did not ind a color bias afecting saliency of mobile UIs. If attention is drawn to brighter colors,

the efect is too modest to be of practical signiicance.

4.3 Efect of element type

Text: We did ind bias toward particular UI elements. Firstly, we saw that most ixations recorded (58.56%) were on

the annotated UI elements. Most of the remaining ixations were on blank areas of the UI, such as the space between

icons and text. Figure 6 depicts the distribution of ixation frequency, ixation duration, element areas, and element

aspect ratios. As can be observed, while all UI element categories attracted approximately the same ixation duration on

average (between 0.2 and 0.3 seconds), ive element categories received clearly more ixations than the rest. The UI

elements ixated upon most often were łImagež (22.4%), łTextž (15.7%), łText groupž (15.2%), łCardž (13.3%), and łIconž

(12.8%). The remaining UI element categories attracted below 10% of the total ixations each. Combined, the two text

categories account for 30.9% of all ixations on UI elements. Therefore, we conirmed the text bias to be present also in

mobile UIs.
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Fig. 6. Base rates ploted against fixations, by element type. Error bars denote 95% confidence intervals.

Images: Images, similarly, received more attention than was expected from the area they cover. However, images

are more varied in content. We manually inspected all UI elements belonging to the łImagež or łCardž category, to

conirm or deny the existence of the face bias discussed earlier in the paper. There were 34 UIs in which one or more

faces appeared, thus representing 17.6% of the UIs in the dataset. Interestingly, whenever an image or card had only

a human face, as was the case in 19 UIs, ixations occurred at the precise location of the face, Then, as long as the

image had text too (seen with 7 UIs), the ixations were much closer to the text’s location than to the face location. This

efect is illustrated in the bottom portion of Figure 7 (see the łGround-truthž column), and was found to be statistically
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signiicant: χ2
(2,N=34)

= 27.137,p < .001,ϕ = 0.893. Therefore, we conirmed the face bias to be present also in mobile

UIs.

Size: Finally, we also investigated whether the size of a UI element had an efect on the ixations made. We ran

Pearson’s product-moment correlation tests between area vs. number of ixations made (r = 0.08) and vs. ixation

duration (r = 0.21), and on aspect ratio vs. number of ixations (r = −0.39) and vs. ixation duration (r = 0.05). No

signiicant correlation was found for any of these (p > .05). Therefore, we conclude that element size does not play an

important role in visual saliency with mobile UIs.

4.3.1 Summary. We found evidence for a strong text bias and a bias toward images and faces. There was no evidence

for a size bias.

5 COMPUTATIONAL MODELING

In this section, we assess a number of classic and data-driven computational models in light of the saliency data collected.

As examples of classic models we consider three well-known stimulus-driven models that are often used as baseline

models in the literature: ITTI [25], GBVS [19], and BMS [67]. ITTI employs diference of Gaussians for feature extraction

and pools the features together in order to infer saliency. GBVS uses image pyramids for feature extraction and employs

graph difusion to ind salient points. BMS uses thresholding to obtain feature maps at diferent scales and combines

them to one inal map. Regarding the data-driven deep learning (DL) models, we consider SAM [11], a state-of-the-art

model that has publicly available source code, and ResNet-Sal, a custom DL model we developed on the basis of SAM

that has a simpler decoding pipeline.

Our model evaluation used the gaze recordings as ground-truth data. Since the classic models are training-free, they

can be evaluated directly, with no added efort. The DL models, however, require a large volume of training data. We

explored various ways to train these models, aiming for the best possible conditions. Here, we refer to the SALICON

dataset [26] (2015 and 2017 releases), a reference dataset in visual saliency experiments that consists of natural images.

We also ine-tuned SAM to the mobile UI dataset via transfer learning [15], so that the model could learn particular

characteristics of our graphical interfaces. Note that no model uses the UI annotations as an additional feature because

they are designed to predict bottom-up saliency.

5.1 Model implementations

The three classic computational models have public implementations in Matlab code, while the DL models are available

in Python. In SAM, the popular ResNet-50 convolutional neural network [20] is used as a pre-trained feature-encoding

backbone, and an attentive ConvLSTM recurrent neural network acts as an integration (saliency decoding) network.

To better understand the role of such a sophisticated attentive decoding network, we developed ResNet-Sal, which

uses the same encoding architecture as SAM and a non-attentive, much simpler decoding network composed of three

upscaling blocks (each having a convolution transpose) followed by two 2D convolution layers.

In summary, we used three classic saliency models łas-isž and the following DL models:

SAM-S2015: Encoding network pre-trained on ResNet-50 weights. Attentive decoding network trained on SALI-

CON 2015 dataset.

SAM-S2017: Encoding network pre-trained on ResNet-50 weights. Attentive decoding network trained on SALI-

CON 2017 dataset.
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SAM-mobile: Encoding network pre-trained on ResNet-50 weights. Attentive decoding network trained on

SALICON 2017 dataset and ine-tuned to our mobile dataset.

ResNet-Sal: Encoding network pre-trained on ResNet-50 weights. Non-attentive decoding network trained on

SALICON 2017 dataset and ine-tuned to our mobile dataset.

As noted, all DL models have the same pre-trained encoding network but the SAM variants use an attentive decoding

network trained on diferent datasets.

5.2 Training and testing

Our dataset is divided into a training partition, comprising 80% of the screenshots and their associated ixation data, and

a test partition, consisting of the remaining 20% of the data. We took special care to balance the number of representative

screenshots from each mobile vendor in both the training and the test partition. We used the RMSprop optimizer [57]

and the following loss function [11]:

L(S, F ) = α NSS(S, FB ) + β CC(S, FC ) + γ KL(S, FC ) (1)

where S is the predicted saliency map and F is the ground-truth ixation data, in either continuous (FC ) or binary (FB )

form. As described below, NSS is the normalized scanpath saliency, CC is the correlation coeicient, and KL refers to the

Kullback-Leibler divergence, which are commonly used to evaluate saliency prediction models. As observed, the model

places particular emphasis on predicting a saliency distribution that matches the ground-truth human visual saliency

as closely as possible. The loss scalars above are set to α = −1, β = −2, γ = 10, as suggested by Cornia et al. [11].

5.3 Ground truth

The eye tracker provides ixation points (FB in the equations above) so we computed the ground-truth continuous

density map FC by smoothing each ixation point with a 2D Gaussian ilter using a standard deviation of 25 px. This size

approximates that of the foveal region of the human eye [52], as 1 visual degree approximates 50 px in our experimental

setup. As stated previously, ixation points falling outside the viewport of the mobile UIs were not taken into account.

5.4 Evaluation metrics

Given the goal of predicting the ixation locations in an image, a saliency map can be interpreted as a classiier of

which pixels do or do not receive ixations [6]. With that notion in mind, the literature has proposed the following

set of evaluation metrics to benchmark the performance of a given saliency model. Some metrics have been designed

speciically for saliency evaluation (NSS), while others have been adapted from signal detection (AUC), image matching

and retrieval (SIM), and statistics (CC). We report results on all of them.

Area under the ROC curve (AUC): There are several variants of the AUC location-based metric, from among which we

chose Judd et al.’s [28] for historical reasons ś for example, the popular MIT benchmark ranks models based on the

AUC-Judd score [3]. The saliency map is treated as a binary classiier of ixations for various threshold values (level

sets), and an ROC curve (true-positive rate vs. false-positive rate) is swept out by measuring the true- and false-positive

rates under each binary classiier. Hence, the higher the AUC value, the better, indicating a greater ability to predict the

salient locations in an image.

Normalized scanpath saliency (NSS): The NSS location-based metric is computed as the average normalized saliency

at ixation locations. Unlike with AUC, the absolute saliency values are part of the normalization calculation. Given a
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saliency map S and a binary map of ixation locations FB ,

NSS(S, FB ) =
1

N

∑

i

S̄i F
B
i (2)

where N =
∑
i F

B
i and S̄ =

S−µ(S )
σ (S )

. A higher NSS value is better, indicating that the predicted map accumulates more

saliency at the ixation points.

Similarity (SIM): SIM is a distribution-based metric for the similarity between two map distributions, viewed as

histograms. It is computed as the sum of the minimum values at each pixel, after normalization of the input maps.

Given a saliency map S and a continuous map of ixation locations FC ,

SIM(S, FC ) =
∑

i

min(Si , F
C
i ) (3)

where
∑
i Si =

∑
i F

C
i = 1. The higher the SIM value, the better, indicating greater consistency with human saliency.

Correlation coeicient (CC): Pearson’s Correlation Coeicient is a distribution-based metric that measures how

correlated or dependent two map distributions are:

CC(S, FC ) =
σ (S, FC )

σ (S)σ (FC )
(4)

where σ (S, FC ) is the covariance of S and FC . The higher the CC value, the better, though CC is a bounded score and

CC=1 denotes the predicted saliency map perfectly matching the ground-truth distribution. In other words, higher CC

values indicate greater consistency with human saliency.

5.5 Results

Table 2 summarizes the modeling results, and Figure 7 provides illustrative results from each saliency model. We used

the test for equality of proportions (with Yates’ continuity correction) to test the null hypothesis that all performance

metrics provided by the models are the same. The omnibus test was statistically signiicant for all metrics, suggesting

that some models performed signiicantly better than the others. Therefore, we ran pairwise comparisons for equality

of proportions as post-hoc test, to better understand the diferences between models.

Metric Type ITTI BMS GBVS ResNet-Sal SAM-S2015 SAM-S2017 SAM-mobile

AUC Location-based 0.223 0.249 0.666 0.692 0.650 0.666 0.723

NSS " 0.126 0.138 0.591 0.704 0.537 0.655 0.839

SIM Distribution-based 0.558 0.206 0.709 0.734 0.562 0.664 0.819

CC " 0.082 0.131 0.580 0.657 0.477 0.621 0.834

Table 2. Results of our saliency models’ performance. The best result is highlighted in boldface type.

AUC: For area under the ROC curve, both ITTI and BMS performed signiicantly worse than the other models:

χ2
(6,N=194)

= 357.177, p < .001, ϕ = 1.357. No statistically signiicant diferences were found between the other models.

We conclude that ResNet-Sal and all SAM variants show equally good predictive power.

NSS: For normalized scanpath saliency, SAM-mobile performed signiicantly better than any of the other models:

χ2
(6,N=194)

= 357.177, p < .001, ϕ = 1.357. No statistically signiicant diferences were found between ITTI and BMS;

between GBVS and ResNet-Sal, SAM-S2015, or SAM-S2017; between ResNet-Sal and SAM-S2017; or between SAM-S2015
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Source UI Ground-truth SAM-mobile SAM-S2015 SAM-S2017 ResNet-Sal GBVS BMS ITTI

Source UI Ground-truth SAM-mobile SAM-S2015 SAM-S2017 ResNet-Sal GBVS BMS ITTI

Source UI Ground-truth SAM-mobile SAM-S2015 SAM-S2017 ResNet-Sal GBVS BMS ITTI

Source UI Ground-truth SAM-mobile SAM-S2015 SAM-S2017 ResNet-Sal GBVS BMS ITTI

Source UI Ground-truth SAM-mobile SAM-S2015 SAM-S2017 ResNet-Sal GBVS BMS ITTI

Fig. 7. Examples of saliency maps predicted for classic (ITTI, BMS, and GBVS) and modern (SAM and ResNet-Sal) models.
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and SAM-S2017. All other comparison results were found to be statistically signiicant. We conclude that SAM-mobile

yields the ixation predictions most closely aligned with ground-truth data.

SIM: For similarity, SAM-mobile performed signiicantly better than all other models except GBVS and ResNet-

Sal: χ2
(6,N=194)

= 195.214, p < .001, ϕ = 1.003 No statistically signiicant diferences were found between ITTI and

SAM-S2015 or SAM-S2017, between GBVS and ResNet-Sal or SAM-S2017, or between ResNet-Sal and SAM-S2015 or

SAM-S2017. All other comparisons were found to be statistically signiicant. We conclude that SAM-mobile, GBVS, and

ResNet-Sal provide equally good similarity between the predicted and ground-truth ixation maps.

CC: Finally, for the coeicient of correlation, SAM-mobile performed signiicantly better than any of the other

models: χ2
(6,N=194)

= 362.549, p < .001, ϕ = 1.367. No statistically signiicant diferences were found between ITTI and

BMS, between GBVS and ResNet-Sal, SAM-S2015, and SAM-S2017, and between ResNet-Sal and SAM-S2017. All other

comparisons showed statistical signiicance. We conclude that SAM-mobile is the model that correlates the best with

human visual saliency.

5.5.1 Summary. Stimulus-driven models such as ITTI and BMS performed worse in general, with data-driven models

generally achieving a higher it. SAM-mobile emerges as the overall winner with these evaluation metrics. We discuss

our explanation for this in the next section of the paper. Figure 8 illustrates some cases of the models failing to predict

visual saliency accurately. While the general accuracy is high, this gallery suggests that there is still some room for

improvement.

Source UI Ground truth SAM-mobile SAM-S2015 SAM-S2017

Fig. 8. Interfaces with poor prediction ś examples from SAM-related models.

6 DISCUSSION

This paper has presented an in-depth study of visual saliency in mobile interfaces. Sampled from numerous Android

and iOS applications, the interfaces varied in style, content, and structure. The material we collected is the irst
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representative and comprehensive dataset for this topic. We assessed known empirical efects and tested several classical

and state-of-the-art saliency models against the ixation data collected.

In reporting the irst empirical indings from this dataset, we have focused on testing some known saliency biases.

Our key indings from comparing mobile UIs to natural scenes are the following:

(1) Strong location bias toward the top-left quadrant of the screen

(2) Strong text bias

(3) Strong image bias

(4) Strong face bias

(5) No efect of element size

(6) Neither center nor horizontal bias

(7) No color bias

Location had the strongest efect on saliency in our data, with the top-left quadrant (Q2) dominating the ixation

data. This has not been reported before for mobile devices, although the efect is predictable. F-shaped and triangular

gaze patterns have been reported for webpages [12]. We believe the most plausible reason is statistical learning of

visual-feature distribution. In other words, designers prioritize the upper left for information that helps orient the user.

Logos, headers, and instructions are most likely to reside in that region. Moreover, labels, text, and headings are often

read from top to bottom, left to right. With repeated exposure to designs of this type, users learn that the top-left corner

makes a wise ixation choice.

It was somewhat surprising to ind a lack of bias based on color or size, since these are elementary stimulus features

considered in bottom-up saliency models. There is an explanation, though. If the distributions of these features are

uninformative, the cue cannot be exploited for saliency, and users learn to avoid them. It could be that the size of an

element, similarly, is not a useful cue for identifying which elements are informative. Consider the wide distribution we

found for colors in the UIs. The only prominent color is gray, which is prevalent in backgrounds.

In contrast, it was less surprising that text and images attract attention, since they have a role in a user’s orientation.

The text bias attests to the visual system’s ability to utilize visual cues that hint at the semantics of an object, even

when as inconspicuous as text elements are. Images, on the other hand, are typically placed in a UI with the goal of

attracting attention, with the colors, objects etc. chosen to stand out.

Taken together, these indings suggest that users exhibit viewing strategies tuned to their expectations of the feature

distributions of mobile UIs. Indeed, UIs are accessed by users for speciic purposes, with particular interactions and a

goal in mind. We argue that visual statistical learning may help explain the thrust of these results, which could further

help explain the modeling output.

A more general inding is that classic models performed worse than the data-driven deep learning models. This might

relect the fact that the classic models are based on stimulus-driven computations, whereas the data-driven models were

trained such that they had access to data on users’ viewing strategies. Across all metrics we examined, the SAM-mobile

deep learning model achieved the best performance. Other models came close but never surpassed it. The superiority of

the SAM-mobile model is explained by (1) the attentive saliency decoding network and (2) the use of transfer learning

for the mobile dataset. The latter case is particularly important, since classic models of saliency were mainly developed

for natural images and the vast majority of DL models of visual saliency are trained and evaluated with natural images.

If users’ viewing strategies are indeed tuned to particular distributions of features, a model trained speciically for

the relevant type of data is bound to have a better it. Why, then, was ResNet-Sal, which was trained on the same data



Understanding Visual Saliency in Mobile User Interfaces MobileHCI ’20, October 5ś8, 2020, Oldenburg, Germany

and ine-tuned to the mobile domain, performed worse than SAM-mobile? We attribute the diference to SAM-mobile’s

attentive saliency decoding network, which may be better at learning strategies of overt attention from data. Related

to this, we noticed that many ixations happened on backgrounds, which can be attributed to covert attention cases

since our eye-tracker was re-calibrated for each participant. In covert attention cases, the user is attending to an object

without precisely placing the eye gaze on that object.

Overall, our modeling results will beneit practitioners who routinely employ saliency models. In light of the results,

we conclude that all deep-learning-based models provide reasonable accuracy of-the-shelf. However, as our study

shows, accuracy can be further improved by training from a mobile-speciic dataset. While this observation has been

highlighted by others [3, 7], until now it was not possible to analyze saliency in mobile UIs because of the lack of a

public dataset. Our results together fuel a recommendation that practitioners should calibrate their models to this

domain.

6.1 Limitations and Future Work

More work is needed for reining our understanding of saliency in the mobile domain. For example, our study should

be replicated in task environments with users who are truly mobile. Paradigmatically, visual saliency has been studied

under free-viewing (bottom-up) conditions as opposed to speciic goals (top-down). While quantifying bottom-up

saliency, user’s familiarity with various mobile platforms plays a lesser important role, however we suspect that it

may play a key role while quantifying top-down saliency. Bottom-up saliency is frequently considered by designers

and researchers (see e.g. [7]), so this paper contributes important information on the unique aspects of mobile UIs.

Top-down saliency is afected by expectations, location memory, search strategies, among other fenomena, which is a

complex topic worthy of future work.

We note also that, according to previous work [9, 30], Eastern people often look at and perceive objects diferently

from Westerners. Chua et al. [9] found that the latter attend more to focal objects in natural scenes, while East Asians

pay more attention to contextual information, and Kelly et al. [30] reported that East Asian subjects displayed central

ixations across all categories of visual stimuli. To investigate these diferences between holistic and analytic vision,

further research is warranted.

In addition, our saliency models predict a static global distribution of visual attention over the image, ignoring the

active role of attention in planning the next ixation point. We believe that models combining goal-driven, learned, and

bottom-up features are required for enhancing predictions of the sequence of ixation points. Future work should also

consider the role of individuals’ diferences as well as visual search strategies, which are mostly guided by top-down

saliency principles [27].

7 CONCLUSION

Our work has shown that the common understanding of visual saliency, especially with regard to some prominent efects

identiied in studies of natural scenes, does not transfer trivially to mobile UIs. In particular, we learned that saliency is

dominated by location and semantic biases, which we believe to be due to their informativeness as conspicuous cues. In

contrast, it is dominated less by some of the core bottom-up features, such as size and color, perhaps relecting that

those feature distributions tend to be less informative in this domain. For designers, our results mean that it is better to

follow the style and conventions of the domain in, for instance, the choice of where to place important elements. Even

conspicuous cues, such as use of red or large size, may go unnoticed, given that mobile UIs are rich in features of this

sort. That said, additional analyses could exploit our data, for better understanding of this phenomena. For example,
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one could look at the interaction efect between visual features and element types. Do images grab attention more

because they are more colorful? What kinds of color distributions do we see in the four quadrants? Our observations

highlight a need for more research into what, if anything, makes mobile UIs special.

8 THE ‘MOBILE UI SALIENCY’ DATASET

The outcome of our study is a rich annotated dataset characterizing the attraction of visual attention in mobile interfaces.

We are publicly releasing the dataset, which includes:

• Screenshots of 193 mobile UIs sampled from present-day application markets.

• Annotations (bounding boxes) of all UI elements in the screenshots.

• Eye-tracking data, including ixation points, timestamps, and aggregated indices like heatmaps.

• The full list of mobile apps and vendors.
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