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ABSTRACT 
Relatively little is known about eye and finger movement in 
typing with mobile devices. Most prior studies of mobile typ-
ing rely on log data, while data on finger and eye movements 
in typing come from studies with physical keyboards. This 
paper presents new findings from a transcription task with 
mobile touchscreen devices. Movement strategies were found 
to emerge in response to sharing of visual attention: attention 
is needed for guiding finger movements and detecting typing 
errors. In contrast to typing on physical keyboards, visual 
attention is kept mostly on the virtual keyboard, and glances 
at the text display are associated with performance. When 
typing with two fingers, although users make more errors, 
they manage to detect and correct them more quickly. This 
explains part of the known superiority of two-thumb typing 
over one-finger typing. We release the extensive dataset on 
everyday typing on smartphones. 
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INTRODUCTION 
This paper presents new data of how people type on touch-
screen devices. Present-day understanding on typing is rooted 
mainly in studies with physical keyboards [16, 33, 37, 48], 
which differ in a few important respects from touchscreen 
keyboards on handheld devices. The most obvious are size, 
hand postures, the role of the thumbs, and the lack of physical 
keyswitches. Everyday mobile typing is carried out on the 
move too. Little research exists on the implications of these 
factors for how people move their gaze and fingers, which is 
surprising, given the prevalence of these devices and general 
awareness that visual and manual strategies affect performance 
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across a plethora of skilled activities, such as typing on phys-
ical keyboards [16, 29], driving [35, 43], and gaming [20, 
21]. 

Our goal is to understand movement strategies in mobile typ-
ing. Visuomotor strategies are learned over experience and 
coordinate manual and sensory actions like hand and eye move-
ments [4]. They are associated with performance [53]. For 
typing, in general, a strategy is needed for coordinating the 
allocation of visual attention between the text display and the 
keyboard, and to guide the timing and speed of finger move-
ments [14, 16]. A typing strategy must also regulate the speed 
and accuracy of aiming, which should adapt, depending on 
target sizes and the permitted rate of errors [7, 22, 25, 30, 
56]. Prior research on mobile devices in particular suggests 
that sharing of the visual attention may have an important 
role. It must be devoted to guiding the fingers because of the 
lack of tactile landmarks [9, 57]. At the same time, it may be 
needed for checking the correctness of the text and of predic-
tions/corrections made by any intelligent text-entry method. 
Visual attention is required also in searching for rarely used 
characters on the keyboard [31, 57]. 

To identify and quantify movement strategies in mobile typing 
and their relationship to typing speed, one must have synchro-
nized eye and finger movement data. Such data are needed for 
revealing movement strategies that are hard to report on ver-
bally. Yet previous work on mobile typing has relied primarily 
on log data for touch events, which is not ideal for in-depth 
studies of visuomotor strategies. Hence, several questions are 
open. Firstly, is visual attention tightly coupled with finger 
movement? With physical keyboards, faster typists generally 
keep their attention on the monitor more than the keyboard 
[16, 29]. One study of mobile devices with physical keyboards 
suggests that there are attention shifts between text display 
and the keyboard [24]; however, this phenomenon has not 
been described in detail for touchscreen typing. Secondly, 
what exactly initiates error correction? Do users detect errors 
directly after the erroneous keypress or much later? Thirdly, 
do strategies differ among common typing styles, such as one-
finger and two-thumb typing? Two-thumb typing is known to 
be faster, with the gain attributed to rapid alternation between 
the lateral sides of the keyboard [45]. For answers, data on eye 
and finger movement are needed. High-quality datasets are 
also critical for efforts in predictive modelling and intelligent 
text entry methods. 
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Figure 1. Illustration of our data as heatmaps of finger touchpoints (blue for right index finger or thumb, and red for left thumb) and eye movements 
(green). All present typing of the same sentence by a different participant: one (index) finger with no typing errors, two thumbs with no errors, one 
finger with errors, and two thumbs with errors. Glances at the text-entry area increase with the number of errors made, and error correction is visible 
as touches of Backspace. In two-thumb typing, visual guidance of the fingers is less in demand, so the gaze covers smaller areas of the keyboard. 

Here, we report on findings from an exploratory study of tran-
scription typing on a touchscreen device (N = 30), working 
with high-fidelity synchronized data from motion tracking, 
eye tracking, and on-device keypress logging. Our method-
ology for the study closely follows prior work on physical 
keyboard typing (“How We Type” [16]). To the best of our 
knowledge, the dataset presented here is the first of this type 
for mobile touchscreen devices. We report on eye movement, 
finger movement, eye–hand coordination, and predictors of 
typing performance with use of both one and two fingers for 
touchscreen devices. Figure 1 illustrates different glancing 
behaviors along with finger touch in our dataset, for a given 
sentence typed with one and two fingers and with and with-
out errors. We devote the rest of the paper to reviewing to-
day’s understanding of movement strategies in mobile typing, 
then reporting on our method and results. While we report 
many detailed analyses, our overarching finding is that gaze-
deployment strategies are complex and much more important 
factors in typing performance than previously thought. We 
explain this and other findings in terms of how movement 
strategies adapt to the limited availability of visual attention. 
We also discuss the implications of the text entry system stud-
ied, which did not offer intelligent text entry techniques. The 
dataset is made publicly available. 

RELATED WORK 
Typing is a complex visuomotor process that engages multiple 
cognitive, perceptual, and motor abilities [16, 39, 55]. This 
behavior has been a topic of research for almost a century [13] 
and typing on touchscreen devices for three decades [15, 19, 
42]. Here, we discuss studies of physical and touchscreen typ-
ing, along with the contrasts they manifest. Papers on typing 
with a physical keyboard report average typing performance 
of around 50 words per minute (WPM) [14, 16]. Generally, 
typing speeds are lower for mobile devices, with reported 
averages between 36 and 41 WPM [3, 47]. 

Typing with a Physical Keyboard 
Typing is a process carried out in phases, such as an input 
phase (grouping the to-be-typed text into chunks), parsing 
phase (decomposing the chunks into discrete characters), trans-
lation phase (converting characters into movement specifica-
tions), and execution phase (conducting the movements) [54, 
55]. These phases are often interleaved, with the parallelism 
depending on a control hierarchy that is responsible for trans-
lating words into letters and motor plans [39]. Motor control 
strategies and ability affect typing performance. Expert typists 
can type quickly on account of automatic translation of letters 
into motor plans, which can be executed quickly [38]. This 
is associated with consistent finger-to-key mappings, which, 
along with preparation of the fingers, predict performance 
[16]. In addition, “rollover”, wherein the next keypress is 
initiated while the previous key is still depressed, is prevalent 
among skilled typists especially; this improves typing perfor-
mance [14]. Finally, alternating hands in typing of bigrams is 
generally superior to typing them with a single hand [16, 55]. 

Typing also requires visual attention. Pointing movements 
often consist of a rapid ballistic and a slower corrective move-
ment. Generally, the eyes and the pointing hand demonstrate a 
“pointing synergy”, both moving towards the target at the same 
time, with the eye arriving earlier due to large saccade speeds 
[26]. However, the tactile feedback provided by a physical 
keyboard permits attending to the text-entry area for the ma-
jority of the time, resulting in fast detection and correction of 
typing errors [16, 29]. Typists who have studied touch typing 
and therefore have stable finger-to-key mappings do not have 
to glance down at the keyboard to search for keys [16, 48]. 

Typing on Mobile Touchscreen Keyboards 
Touchscreen keyboards are generally much smaller than phys-
ical ones. Hence, most mobile typists use one or two fingers 
(generally thumbs) rather than the 3–9 fingers often used with 
physical keyboards [16, 47]. In a pattern similar to physical 
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keyboards’, the use of two fingers (generally thumbs) yields 
faster typing, via finger alternation and preparatory move-
ments of the free finger [12, 41, 45]. To overcome the slower 
overall typing on touschreen keyboards, several intelligent 
text-entry methods have been suggested [34, 47]. These in-
clude auto-correction of mistyped words, prediction of the 
next word, dynamic resizing of keys, touchpoint correction, 
and accounting for hand posture. In a recent logging study 
of mobile typing, more than 80% of participants used some 
sort of intelligent text-entry aid [47]. In the interest of starting 
from a simpler visuo-motor-cognitive problem, we here focus 
on the non-aided case. 

In addition to being smaller than physical keyboards, mobile 
touchscreen keyboards lack the tactile feedback of physical 
keys [23]. The fingers, lacking a physical reference point, 
need to be constantly monitored and guided by visual attention. 
Therefore, attention-sharing strategies differ between physical-
and touschreen-keyboard typing. Glances at the text-entry 
area permit proofreading of the text entered but hinder visual 
guidance of the fingers, reducing typing speed [47]. However, 
undetected errors are costly; when detected later, mistakes 
require more steps and time to correct. Users are known to 
slow their typing in response to errors [5], and the strategic 
finger speed–accuracy tradeoff and proofreading frequency 
have a large impact on text-entry performance [30, 47, 56]. 

Some studies have investigated the role of eye movements 
in non-typing touchscreen interactions. On internet-based 
tasks on tablets, gaze has been observed to precede touch 
with similar spatial and temporal features as observed with the 
mouse, but with individual differences [60, 61]. Interaction 
between gaze and touch has also been utilized to adapt UIs 
with the help of a predictive model [49]. On tablets with split 
keyboards, it is often enough to attend only the text entry area 
and use peripheral vision to guide fingers [40]. 

Theories and Models 
Typing models make predictions such as transcription time, 
inter-key-interval, and number of errors. Work thus far has 
focused mainly on modeling typing on physical keyboards, 
with fewer attempts relevant for mobile typing. Arguably the 
most popular statistical models are based on Fitts’ law, which 
models aimed movement performance [17]. After calibration 
of its empirical parameters to touchscreen pointing, it can 
predict performance over a range of layout conditions [7]. 
However, this family of models can only approximate the 
skilled typing behavior achievable after extensive practice 
[62]. Absent from these models are the adaptive strategies 
that govern the distribution of visual attention and describe 
the visual guidance of finger and proofreading activity or the 
frequency of proofreading [5, 30, 31, 50, 56, 57]. 

Keystroke-Level Models (KLMs) break task execution into 
operations, such as recall, pointing, homing, and attention 
shifts [24]. However, being sequential models, KLMs do not 
cover parallel movement, learning, or the role of attention. Nor 
do they predict how the interface or the user’s abilities affect 
the choice of typing strategies. Finally, simulation models are 
step-by-step programs emulating the cognitive and physical 
steps involved. One recent model covers 12 operations or 

production rules: creating a mental representation of the task, 
visually attending the target, pointing at the target, confirming 
that the task is done, etc. [9]. The operations are simulated 
with a cognitive architecture, which computes their execution 
times and links together the separate cognitive modules, such 
as memory and attention. Predictions can be generated for a 
wide range of task conditions. The model predicts how typing 
performance is influenced by, for instance, changes in the 
number of keys or in features such as their size. 

The choice of movement strategy is very difficult to model with 
production rule-based cognitive architectures due to the sheer 
number of possible strategies. Recent research has turned to 
computational rationality [18, 36] to simulate strategic adapta-
tion of gaze to the task environment [31, 56]. There, typing 
performance is modeled as an adaptation of eye and finger 
movement to the constraints of the human visuomotor sys-
tem and the interface. At the moment, however, this class 
of models does not fully cover typing phenomena, including 
parallel finger and eye movement, one hindrance having been 
the absence of a rich dataset. 

METHOD 
We designed an experiment to obtain a rich dataset of move-
ment strategies in a transcription task. Participants typed rep-
resentative everyday messages and were instructed to correct 
typing errors. This is consistent with other research, where 
the instruction is often to type “quickly and accurately” [14, 
47] or to correct errors upon noticing them [16]. We collected 
data for typing with the index finger and with two thumbs, the 
most common typing styles [47]. We used a Qwerty keyboard 
without intelligent typing aids to establish a dataset of baseline 
typing phenomenon. All data were synchronized in time, and 
all positions were registered in a single coordinate system. 

Participants 
We recruited 33 subjects. Because of gaze-data loss (device 
error), the number of participants decreased to N = 30 (18 
female; age range 18–45, M = 25.5, SD = 5.9). Three par-
ticipants were left-handed (1 female). All participants were 
native Finnish-speakers and had normal or corrected vision 
(correction strength between -4 and +4). All reported using 
Finnish in their typing, with most using computers (desktop 
or laptop) several times a day (two reported using only a few 
times a month). Also, most used touchscreen devices (mobile 
phones or tablets) several times a day (one reported once-a-
day use). The participants reported spending, on average, 16.7 
hours (SD = 16.4) a week typing on a physical keyboard and 
11.6 hours (SD = 8.0) on a mobile software keyboard. In our 
study, we observed typing performance of between 14.9 and 
58.4 WPM for two-thumb typing and 19.1–33.3 WPM for 
one-finger typing. Each participant was compensated with two 
movie tickets (total worth about e20) for their time. 

Experiment Design 
Each subject typed 40 sentences randomly selected from a set 
of 75. There were 20 sentences (trials) each for one- and two-
finger typing, with each participant typing in both conditions 
(order was counter-balanced). No participant was given the 
same sentence twice. 
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Figure 2. Left: A view for calibrating the eye tracker. Right: User inter-
face of the typing task. The green boxes are for eye-tracking purposes. 

Figure 3. Posture for holding the device and sitting during the experi-
ment. Shown are grips for one- and two-finger typing. The block above 
the device is for tracking the phone position. 

Materials 
Smartphones with a 4.7–5.5-inch touchscreen form the main-
stream of the current market [28]. From among those devices 
we chose the Samsung Galaxy S6 smartphone (1440× 2560, 
577 ppi) with a screen size of 5.1 inches. We developed a 
custom typing application for collecting key-pressing data and 
permitting the synchronization of data sources. The typing 
application is shown in Figure 2. Its two main views were 
the calibration view and the typing view, the former used for 
synchronizing data sources at the start of the task block and 
the latter for the transcription tasks themselves. The keyboard 
in the application had a standard Finnish Qwerty layout (key 
height: 10.06 mm). The participants transcribed relatively 
simple, memorable everyday sentences, selected from the En-
ron Mobile Email Database [16, 59]. Seventy-five sentences 
were translated into Finnish by a native speaker and checked 
by one of the authors. All sentences were stripped of special 
characters and punctuation, and everything was in lowercase. 
Mean sentence length was 20 characters (SD = 4). 

Procedure 
Firstly, participants were told that the purpose of the study was 
to analyze the movement of the eyes and fingers in smartphone 
typing, and they filled in a background questionnaire. During 
the experiment, they sat in a chair at an adjustable-height table 
with the smartphone freely in their hands, which were resting 
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on the table (see Figure 3). They were then given five min-
utes to practice and become familiar with the typing interface. 
After three-point calibration for eye-tracking glasses, partici-
pants were asked to press four buttons on the screen, marked 
with the numbers 1 to 4, in ascending order, for synchroniza-
tion between the motion tracker and smartphone. Each task 
trial consisted of one sentence, which was given to the par-
ticipant aurally via a speech synthesizer to avoid unnecessary 
eye movement during the experiment. The participants were 
asked to repeat the sentence aloud to confirm that it was heard 
correctly and to strengthen the memory of the sentence, after 
which they could start typing. They were asked to type as 
quickly as possible and not leave errors in the final sentence 
submitted. As the task block dictated, the participant used 
either two thumbs (two-finger condition) or the index finger 
of the dominant hand (one-finger condition). For two-finger 
typing, participants were asked to hold the device in both 
hands and perform typing with two thumbs. For one-finger 
typing, they were asked to type with only the index finger 
of their dominant hand and hold the smartphone in the other 
hand. During the experiment, we suggested that the partic-
ipants rest their arms on the table and try to keep the same 
posture throughout the experiment block [10]. However, there 
were no physical constraints to movement, and the subjects 
reported no discomfort. Error correction could be performed 
via a backspace button, with no other means provided, such as 
moving the cursor by touching the typed text. The trial time 
for one sentence was calculated as the time from the first key-
press to pressing Enter, keypress being defined as the moment 
of a keydown log event. 

Data Collection and Preprocessing 
We collected three types of data: eye movement, finger motion, 
and keypresses. For eye movements, we used SMI model 2W 
A eye-tracking glasses (60 Hz at 30 FPS). The glasses had 
infrared cameras tracking eye movements and a forward field 
camera to record the screen of the mobile device held in the 
hands. Participants with corrected vision had corresponding 
corrective lenses attached. The three-point calibration was 
done via the calibration screen (on the left in Figure 2), with 
the participant asked to focus on the blue rectangles one at a 
time. In the experiment proper, the green rectangles (in the 
right pane of Figure 2) were used to transform the eye-tracking 
coordinates into device screen coordinates. 

To track finger movement, we used an OptiTrack Prime 13 
motion-capture system that provides 3D precision of up to 
0.2 mm at close proximity. In one-finger typing, a reflective 
marker was attached to the top-middle part of the nail of the 
index finger of the dominant hand; in two two-thumb typing, 
one was attached to each thumb. The system was calibrated at 
the start of the block, with the same calibration screen as for 
the eye-tracking device (see Figure 2); the participants were 
asked to type the numbered blocks in order. For turning the 
finger position into device coordinates, four reflective markers 
were placed above the smartphone, in a holder (see Figure 3). 

We checked all data manually and excluded three participants 
because of loss of fixation data (resulting in N = 30). From 
the remaining participants’ data, 244 trials out of the 1,199 
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were excluded from eye-movement-related analyses due to 
data corruption (i.e., fixation data were present for less than 
90% of the trial). The loss was not correlated with sentence 
length (M = 20.44 words before data removal, M = 20.46 
after). Loss of some motion-tracking data led to 45 further 
trials being excluded from finger-movement-related analyses 
(same criterion; also no change in sentence length). Finger 
tracking data were validated by confirming that the lowest 
local points of the finger(s) coincided with the pressing of 
keys in the device log. We extracted the coordinates from the 
raw data on finger and eye movements and converted them into 
a common coordinate system for the smartphone screen. In the 
data, the upper-left corner of the screen is the origin (0,0,0), 
with x axis values increasing toward the right of the device 
and y values from top to bottom. The distance from the screen 
facing upward is the positive z value. The unit in a datum 
refers to one pixel of the smartphone screen. The motion-
tracking system labeled and tracked each marker during the 
experiment. In the two-thumb typing condition, in cases where 
the tracker confused the fingers with each other due to their 
close proximity, we checked and corrected the data manually. 

Metrics 
We followed the guidance for typing performance metrics [64]. 
For eye and finger movement data, we compare the metrics to 
previous eye-and-finger-tracking study of physical keyboard 
typing [16]. The metrics used can be summarized thus: 

• Inter-key interval (IKI) [16]: time between two subsequent 
keypresses. 

• Words per minute (WPM) [16]: the number of standard 
words (every five characters in the final input text) divided 
by the time spent on typing. 

• Backspace [47]: the number of Backspace presses during 
typing of a sentence. 

• Uncorrected error rate [64]: non-corrected incorrect 
keystrokes as a percentage of the sum of incorrect (whether 
fixed later or not) and correct keystrokes. 

• Corrected error rate [64]: incorrect but rectified keystrokes 
as a percentage of the above sum. 

• Immediate error correction [2]: the frequency of error cor-
rection in which the user immediately identified and cor-
rected an error with a subsequent Backspace press. 

• Delayed error correction [2]: the frequency of error cor-
rection wherein the user tried to correct previously missed 
errors in the middle of the input stream. 

• Chunk length: the average length of a chunk during typing 
of each sentence. In typing, “chunking” refers to splitting 
the sentence into smaller pieces to manage working memory 
load [1]. We identified the border of a chunk with when a 
clear increase in IKI is observed [11, 65]. The difference be-
tween neighboring IKIs is denoted as IKI difference (IKID). 
If the difference between neighboring IKIs is greater than 
the average IKID for the sentence, the key-pressing moment 
is considered to be a chunk border. 

• Gaze shift: the average number of glances away from the 
keyboard area into the text area during typing of a sen-
tence. The areas are defined as either the text area or the 

keyboard, both extended by 1.40 cm to all directions to 
account for foveal vision and possible slight drift in the eye 
tracking data. Gaze shift has previously been measured as 
the number of gaze shifts from the monitor to the keyboard, 
reflecting most of the attention being put on the monitor 
[16]. We measured it in the opposite way, assuming that 
most of the attention would be on the touchscreen keyboard. 

• Time ratio for gaze on keyboard: the percentage of the time 
spent glancing at the keyboard. This is obtained by dividing 
the duration of gazing at the keyboard area by total trial 
time [16]. 

• Entropy [16]: how consistently a key is pressed by the same 
finger in the two-finger typing condition. For each key k, 
given a frequency distribution over the two fingers, we com-
pute the entropy as Hk = −∑ f ∈Fingers p f log2(p f ), where 
p f is the probability of finger f pressing key k. The average 
entropy of a finger-to-key mapping is then computed as a 
sum over the entropy of each key weighted by the frequency 
of the corresponding letter. If a given key is always pressed 
by the same finger and this is true for all keys, the entropy 
is 0. To represent the finger–key mapping graphically, we 
show the distribution of touchpoints, using different col-
ors for different fingers. Heatmaps were created on the 
background of a keyboard screenshot with layers of density 
plotted via the SEABORN.KDEPLOT tool. 

• Keys per finger [16]: the number of keys controlled by each 
thumb in the two-finger typing condition. 

• Finger path: the distance that a finger has traveled during 
typing of a sentence. 

• Distance to the next key [16]: at the moment of the current 
key-pressing, the average distance between the next target 
key and the finger for pressing that key. 

• Finger alternation [16]: the percentage of bigrams entered 
with finger alternation. 

• Same finger bigram [16]: the percentage of bigrams entered 
with the same finger. 

• Letter repetition [16]: the percentage of pressed keys that 
are the same as the previous key. 

Statistical tests were carried out using the Wilcoxon signed-
rank test with α = 0.05. Correlations between factors were 
calculated via Linear mixed-effects models with the LME4 
package for R. Below, we report standardized β s as the corre-
lation metric, noting any control variables that were used. In 
addition, all models had the task condition (number of fingers 
used) as a fixed effect, and subject and sentence-level as ran-
dom effects [32]. The p-values for β estimates were calculated 
via Satterthwaite approximation to degrees of freedom. 

RESULTS 
We collected, in total, 31,988 keypresses from the 30 partici-
pants (16,593 in the two-finger and 15,395 in the one-finger 
condition). Table 1 summarizes our main findings, aggregated 
first at subject level and then on grand condition level. 

Typing Performance 
As expected, we found statistically significant differences in 
typing performance between two-finger and one-finger typing 
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Measure 
Two-finger 
M SD 

One-finger 
M SD 

Wilcoxon test 
W (29) d 

IKI (ms) 
WPM 

266.81 
39.33 

63.56 
10.3 

380.94 
27.19 

50.95 
3.61 

82*** 
779*** 

-1.98 
1.57 

Performance 

Backspace 
Uncorrected error rate (%) 
Corrected error rate (%) 
Immediate error correction 
Delayed error correction 
Chunk length 

3.58 
0.6 
12.23 
0.41 
0.93 
4.43 

2.8 
0.87 
7.29 
0.38 
0.83 
0.53 

2.61 
0.56 
9.38 
0.40 
0.63 
3.98 

1.81 
0.71 
5.75 
0.26 
0.47 
0.41 

575.5 
468.5 
586* 
413 
569.5 
689*** 

(0.41) 
(0.05) 
0.43 
(0.03) 
(0.44) 
0.94 

Number of fixations 18.79 8.05 24.04 4.56 192*** -0.81 

Eye gaze 
Fixation duration 
Saccade length (cm) 
Gaze shift 

315.27 
3.37 
3.4 

67.65 
0.75 
2.31 

303.99 
3.58 
3.91 

45.72 
0.68 
1.5 

454 
339 
269* 

(0.2) 
(-0.29) 
-0.26 

Time ratio for gaze on keyboard 0.6 0.16 0.7 0.14 263** -0.69 

Finger 
movement 

Entropy 
Keys per finger left 
Keys per finger right 
Finger path left (cm) 
Finger path right (cm) 
Dist. to next key1 (cm) 
Finger alternation (%) 
- IKI (ms) 
Same finger bigram (%) 
- IKI (ms) 
Letter repetition (%) 
- IKI (ms) 

0.07 
4 
9.24 
23.06 
26.16 
1.2 
39.91 
243.10 
60.09 
289.43 
11.59 
177.78 

0.04 
0.68 
0.74 
2.82 
2.11 
0.15 
4.59 
73.63 
4.59 
62.66 
3.1 
23.81 

0 

12.5 

25.29 

2.3 
0 
-
100 
364.81 
10.17 
182.15 

0 

0.55 

1.33 

0.1 
0 
-
0 
48.14 
2.37 
25.25 

-
0*** 
0*** 
179*** 
702*** 
0*** 
-
-
0*** 
151*** 
591* 
417 

-
-13.75 
-5 
-1.02 
0.49 
-8.78 
-
-
-12.30 
-1.35 
0.51 
(-0.18) 
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Table 1. Overview of the results for the one- and two-finger typing conditions. Differences between the conditions are tested using the Wilcoxon Signed-
rank test (d f = 29), with effect size d computed as Cohen’s d value. 1Not including consecutive clicks on the same key. *) p < 0.05 **) p < 0.01, ***) 
p < 0.001. 

(all test results are in Table 1). Users made more errors when 
typing with two fingers than with one (corrected error rate 
M = 12.23% vs M = 9.38%), although they corrected most of 
these before submitting the final sentence (the uncorrected er-
ror rates were M = 0.6% and M = 0.56% respectively). When 
using two fingers, participants were faster at typing (visible 
in lower IKI and higher WPM values), used longer chunks 
(M = 4.43 vs. M = 3.98), and made fewer gaze shifts be-
tween the keyboard and the text-entry area. The chunk sizes 
identified here are in line with the morphology of the Finnish 
language [44]. The comparisons between one- and two-finger 
typing are consistent with the previously observed error rates 
of 10.80% and 8.17%, and with typing speeds of 50.03 WPM 
and 36.34 WPM for two- and one-finger typing, respectively 
(the study cited did not include error correction) [3]. Partici-
pants exhibited more delayed error corrections than immediate 
error corrections, both in one- and in two-finger typing, mean-
ing that most errors were detected only after typing of further 
characters. 

We also correlated typing performance with background fac-
tors. Younger users were more likely to type more quickly and 
made less gaze shifts [47]. WPM values were negatively corre-
lated with age (β = −0.27,b = −0.64, p < .001) while gaze 
shift had a positive correlation with age (β = 0.33, p < .01). 
We did not observe a correlation between error rate and age. 

Finger Movement 

Global finger movement 
Global finger movement is the length of the total travel path 
of a finger or fingers in a sentence. We found significant 
differences in path length between both left- and right-hand 
data from two-finger typing and data for the dominant hand in 
one-finger typing. The average finger path in one-finger use 
(M = 25.29cm) is shorter than the sum of the finger paths in 
two-finger use (M = 49.22cm). Two fingers together travel 
more during typing than one finger, because each is free to 
move while the other finger is typing. As we show below, this 
is likely to be related to preparation of the free finger. 

Finger-to-key mapping 
Work based on logging data has assumed that the left and 
right thumb split the keyboard area [45]. We revisited that 
assumption in light of the motion-tracking data. We found 
that, overall, the right thumb (M = 9.24) is in charge of more 
keys than the left (M = 4.00). The right hand covers a larger 
area during typing than the left does, as Figure 4 shows. We 
observed no significant effect of finger-to-key mapping entropy 
on typing speed or error rate, meaning that this choice of 
strategy did not influence the participants’ performance much. 
The reason could be that, since visual attention is needed for 
guiding the fingers, the finger that presses the next key can be 
selected opportunistically. 
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Figure 4. Heatmap showing finger-to-key mapping in two-thumb touch data of three participants (all sentences aggregated). Left thumb is red, right is 
blue. These patterns are representative of a tendency we found in the data for the right thumb to cover more keys than the left. The right hand was the 
dominant hand for most of the participants, but the same pattern was observed also for the left-handed participants. 

Finger preparation 
Finger preparation is an index of how much a finger moves in 
advance even before its “turn”. It is measured as the distance 
of a finger from the key that it will press at the moment when 
the previous key is being pressed. We observed shorter prepa-
ration distance for two-thumb typing (M = 1.20cm) than for 
one-finger typing (M = 2.30cm). Analyzing this further, we 
found a negative correlation between distance to the next key 
and WPM, β = −0.41, p < .001, even when controlling for 
the true distance between subsequent keys (in the two-finger 
condition, this refers to subsequent keys pressed by the same 
finger). As is visible in Figure 5, the effect is similar between 
the one- and two-finger conditions, although, understandably, 
the latter condition allows more flexibility for preparing the 
finger that is not currently typing. In one-finger typing, the 
keypresses are executed with the finger in a sequential manner, 
so the distance between the finger and the next key is approxi-
mately equal to the inter-key distance. However, in the case of 
two-finger typing, users are free to decide and can control their 
fingers for parallel input with the two fingers. As one finger 
is clicking on a key, the other finger is already activated for 
aiming for the next key. The parallel control visibly increased 
the typing speed in the two-finger condition. 

Finger alternation 
Confirming previous findings based on log data [45, 47], we 
found a benefit for finger alternation. We observed a lower IKI 
in alternating (IKI = 243.10 ms) as opposed to using a single 
finger (IKI = 289.43 ms). This benefit notwithstanding, it was 
more common to continue using the same finger: 60.09% of 
bigrams were typed with one finger instead of two. Complet-
ing a bigram with one finger was faster in two-thumb typing 
than in one-finger typing (IKI = 364.81 ms). This can be at-
tributed to the longer average travel distance when one finger 
is used in typing. Figure 6 shows the IKI distribution between 
types of bigrams for the same finger and alternating fingers in 
two-thumb typing, the same finger in one-finger typing, and a 
repeated letter in both two- and one-finger typing. 

Eye–hand Coordination 
Eye–hand distance 
We examined the distance between the fixation point and the 
finger in one-finger typing (this cannot be unambiguously 
computed for the two-thumb case), so as to understand whether 
a closer eye–hand coupling can lead to better performance. We 

found a significant positive correlation between the average 
eye–hand distance and the average corrected error rate per 
sentence (β = 0.32, p < .01), controlling for the number of 
backspaces per sentence. This illustrates that typing errors 
are correlated with more visual attention on text area, which 
results in looser eye–hand coupling. For typing speed, as 
expected, we found a negative correlation between average 
eye–hand distance and average WPM per sentence (see Figure 
7). However, this result may be explained by slower typists 
having to look at the text display more, which manifests itself 
here in long eye–hand distances. Therefore, we looked at 
eye–hand following specifically when both are operating in 
the keyboard area. 

Eye–hand following 
When pressing a key or in searching for one, the finger may 
follow the eye. To look at eye–hand following behavior, we 
extracted finger and eye movement paths in one-finger typing 
where the eyes stay in the keyboard area. We examined the 
dissimilarity between the finger movement and eye movement 
path by means of the Partial Curve Mapping (PCM) method, 
which uses a combination of arc length and area to determine 
the similarity between curves [63, 27]. We found a positive 
correlation between WPM and dissimilarity, β = 0.16, p < 
.001. If a user types more quickly, there is less similarity. One 
explanation might be that fast typists have less need to guide 
their fingers with the eyes and so retain global supervisory 
control over the keyboard while trusting in the accuracy of 
their fingers. Also, we found a negative correlation between 
time ratio for looking at the keyboard and dissimilarity (β = 
−0.2, p < .001), indicating, as expected, that the more the 
gaze is on the keyboard, the greater the similarity between the 
finger path and eye movement path. 

More detailed investigation of eye and hand movement might 
help to explain this finding. Figure 8 shows the distance of 
the eye and the finger from the next key that is typed, taken 
from two partial example sentences from two participants 
(one-finger typing). Glances at the text-entry area are visible 
as large distances between the eye and the target key. In 
both sentences the finger and the eye move simultaneously 
toward the target key. The finger moves rapidly at first, and it 
slows down near the target for the final “peck”. However, one 
can see a subtle difference between these participants: in the 
lower pane, the eye quickly finds the target key, after which 
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it starts moving away from it even before the finger can peck 
it. Similarly, when backspacing, the upper-pane participant 
uses the eyes to locate Backspace whereas the lower-pane 
one looks at the text-entry area after having already visually 
located Backspace. It is possible that participants who trust 
their pointing accuracy more can free their vision for other 
tasks than guiding the finger, producing both faster typing and 
greater dissimilarity between the eye and finger paths. 

Proofreading and Error Correction 
Gaze-shifting 
We defined a gaze shift as a glance from the keyboard at the 
text area, and we take a gaze shift to indicate either (pre-
emptive) proofreading or error-correction activity: a glance 
is initiated to check the typed text for errors, attend it for 
possible new errors, or to control backspacing when an error 
has been found. Again, in our study, the only way for partic-
ipants to correct errors was by using the Backspace button. 
The left pane in Figure 9 illustrates the average number of 
gaze shifts with one- and two-finger typing, and for both sen-
tences that contained error correction and those that did not. 
In sentences with typing errors (and the subsequent error cor-
rection), our participants shifted gaze between the text-entry 
area and the keyboard more than in error-free sentences. The 
pattern is identical between the typing conditions, although 
the one-finger condition displayed slightly more gaze shifts. 

More total time was used for looking at the keyboard in one-
finger than in two-finger typing, and more was used for sen-
tences without backspacing (right pane in Figure 9). This 
means that glancing behavior is more erratic under one-finger 
typing, with gaze shifts as well as less relative time spent 
glancing at the text area. Analyzing the correlation between 
the time ratio for keyboard glances and the corrected error rate, 
when controlling for uncorrected error rate, we observed a neg-
ative β = −0.35, p < .001. Similarly, the number of glances 
at the text-entry area correlates with the number of corrected 
errors, β = 0.58, p < .001. Nevertheless, there were still, on 
average, 2.4 glances into the text-entry area for sentences that 
contained no error correction. 

To investigate the impact of proofreading activity on typing 
performance further, we analyzed the correlation between 
WPM and gaze shifts, observing β = −0.51, p < .001. This 

Figure 5. The impact of finger preparation on WPM by the task condi-
tion. The x axis shows distance of finger from its next key, divided by the 
distance of the current and the next key (pressed by the same finger). 
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Figure 6. The impact of finger alternation for inter-key-intervals be-
tween different bigram types. 

Figure 7. Eye–hand distance and average IKI per sentence. 

negative correlation remained even after controlling for the 
amount of error correction the participants did (although the 
corrected estimate was smaller, β = −0.17, p < .001). Even 
for the subset of the data with only sentences containing no 
backspacing or uncorrected errors, we observed a negative 
correlation β = −0.16, p < .001. These findings mean that, 
irrespective of the number of errors made and corrected, typ-
ing performance is negatively correlated with gaze shifting 
between the keyboard and the text entry area. Reflecting on 
the same phenomenon, the percentage of sentence-typing time 
for which the eyes were on the keyboard had a small but statis-
tically significant correlation with WPM, β = 0.11, p < .001. 
Typists who focus more on the keyboard can reach higher text-
entry rates. This focus may reflect a typist’s level of confidence 
in not having made typing errors. 

Correction of errors 
We looked at two types of error correction: immediate error 
correction refers to when the user immediately identifies an 
error and corrects it with a subsequent Backspace press; de-
layed error correction occurs when the user attempts to correct 
an error in the middle of the input stream that was missed or 
overlooked, via multiple Backspace presses. To investigate 
the latter error type further, we split consecutive Backspace 
presses into the first press, intermediate backspacing, and the 
final press of Backspace. 

As shown in Figure 10, it took more time for the participants 
to press Backspace a single time or make the first of multiple 
backspaces, relative to an average keypress. For intermediate 
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Figure 8. Key-by-key distance of the eyes and the finger in two par-
tial sentences (truncated to about 6 seconds of typing; ‘<’ refers to 
Backspace). Note the different sentence in these examples. 

Figure 9. Left: Number of gaze shifts to text area. Right: Ratio of gaze 
spent looking at the keyboard. Error bars are standard errors. 

Figure 10. Typing interval for various types of key pressing 

presses during a run of backspaces and for the final Backspace 
press, the average time consumed was much lower than that 
for an average keypress. The average time used for a single 
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backspace was lower in typing with two fingers than in typing 
with one finger. 

We calculated the frequency of various types of error-
correction behavior across conditions. For two-thumb typing, 
more delayed error corrections (M = 0.93) were observed than 
immediate ones (M = 0.41). Finally, we investigated the con-
nection between typing errors on typing speed. Since errors 
and the backspacing that erases them (along with any correctly 
typed text between the error and the correction) do not con-
tribute to typing the sentence, we expected a higher error count 
to contribute to smaller WPMs. Controlling for uncorrected er-
ror rate, we indeed found a clear negative correlation between 
backspace count and WPM, β = −0.61, p < .001. Further, 
controlling also for glances at the text entry area, the effect 
remained at β = −0.49, p < .001. 

DISCUSSION 
A rich dataset was collected to deepen our understanding of 
how the fingers and eyes move in typing with mobile devices. 
The main finding over prior work is that movement strategies 
in mobile typing are strongly affected by competition for visual 
attention. Whereas with physical keyboards a skilled typist 
can keep his or her attention on the text display, where it 
is needed for detecting errors [29, 52], in mobile typing the 
need to guide finger motion competes for attention. Since 
one cannot monitor the keyboard and the text display at the 
same time, even though the mobile device is small, a strategy 
must be selected that determines which to give attention and 
when. A good strategy must strike a compromise between 
the cost of not correcting errors early and the time lost in 
glancing at the text display, when the fingers cannot be guided. 
Further, if the typist is not skilled with the keyboard, they 
need to conduct costly visual search, which we did not need 
to consider in our analysis [31]. Conversely, it is possible that 
a very skilled typist has learned to control finger movement to 
an extent that most of the time the gaze can be kept on the text 
area. However, a more detailed analysis of very fast typists 
would be required to investigate this. Supervisory control in 
mobile typing is, hence, not just about the speed–accuracy 
tradeoff of finger movement; at its core is the deployment 
of gaze between the main regions of the application. While 
cost–benefit analyses have shown this in the case of intelligent 
text-entry methods [50], the general point has not been made 
before with a support from data. 

Understanding the competition for attention that goes on in 
typing helps us understand what makes typing fast vs. slow. 
It also makes important implications for smart typing aids, 
which in light of our results should not compete for attention 
and require learning of more complicated attention shift poli-
cies, like, for instance, word prediction lists do. We found that 
typing speed is positively correlated with the amount of atten-
tion on the touchscreen keyboard. The attention of a typical 
typist in our study was on the keyboard about 60% of the time, 
while the equivalent figure for a touch typist in a comparable 
study of physical keyboard typing was only 20% [16]. Also, 
the frequency of gaze shifts is much higher in mobile typing: 
3.4 in our study, compared with 0.92 in the physical keyboard 
study. Similarities between mobile typing (our study) and 
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typing on physical keyboards [16] include unequal division of 
labor between hands, the benefit of preparatory movements, 
and the negative effect of errors on typing speed. We further 
note that that study is similar to ours in key respects, including 
the task and the sample (our mean age 26, their 31 years). 

The notion of resource competition can also help refine our 
understanding of the known superiority of two-thumb typing 
over one-finger typing [3, 47]. It has been attributed to alter-
nation between the lateral sides of the keyboard [45], and our 
results corroborate this. Switching between sides is faster than 
moving a finger from one side to another. But we also found 
that two-thumb-typing users benefit from preparatory move-
ments, moving a soon-to-press finger toward its next target, 
similar to a pattern found in typing on physical keyboards [16]. 
However, significantly more errors are made when typing with 
two fingers instead of one. We found that in two-thumb typing, 
there are more intervening keypresses between consecutive 
glances at the text display. Users notice the errors later. Hence, 
the large benefits of two-finger use (shorter travel distance, 
preparatory movements) outweigh the costs (more delay in 
detection of errors). Making users aware of possible errors 
earlier presents an interesting challenge for intelligent text 
entry methods. 

We also observed a curious and previously unreported phe-
nomenon in two-thumb typing: there is unequal division of 
labor between the two lateral sides of the keyboard. Earlier 
models of two-thumb typing, based on log data rather than on 
direct observations of finger movement have assumed equal 
distribution [45]. We found, in contrast, that the right hand 
does most of the work. This was the dominant hand for most 
of the participants, but the same pattern was true for the left-
handed participants. The finger movement paths were signifi-
cantly longer for the right (dominant-hand) finger than the left. 
While the monogram frequencies of Finnish might contribute 
to this, the effect has been observed also with non-Finnish typ-
ists using physical keyboards [16]. The unequal split between 
the hands could have implications for the customisation and 
adaptation of keyboard layouts. 

Our results can inform the development of predictive models. 
The strong role of gaze deployment we found is in stark con-
trast with some previous accounts that have framed mobile 
typing in terms of finger movement [7, 62]. What analyses 
based on Fitts’ law miss is the significant challenge posed to 
visual attention in typing: how to juggle between the two areas 
of the display that need attention. Fitts’ law conceals these 
intriguing and critical effects in the empirical parameters (a 
and b). At the same, the existing non-Fittsian models similarly 
fail to account for the parallelism of gaze and finger move-
ments. The KLM model of Holleis et al. [24], its extension 
by Sarcar et al. [56], and the ACT-R model of Cao et al. [9] 
all assume that either the gaze or the finger is moving but not 
both. Finally, it is important to develop generative models that 
model how eye–hand strategies adapt – for example, to chang-
ing probability of errors, to the number of fingers used, to the 
cost of error correction, and with time/experience. While these 
points have been made before [31, 56, 50], we currently lack a 
unified model. In light of our findings, such a model must be 

able to explicate the role of attention control. We propose that 
hierarchical reinforcement learning [8] is a potential candidate 
control principle to explain thse gaze deployment strategies 

LIMITATIONS AND FUTURE WORK 
A few caveats must be taken into account when interpreting our 
findings. Firstly, our experiment was conducted in a quiet lab-
oratory, with participants comfortably seated and resting their 
arms on the table. Mobile typing often takes place in dynamic 
environments, and there might be substantial differences in 
performance and strategies [46, 51]. The instrumentation we 
used in our study cannot be easily used in the wild, but it is 
possible to design laboratory interventions which emulate real-
life circumstances, such as walking or multitasking (e.g,. [6]). 
Second, our participants used a normal touchscreen Qwerty 
keyboard without intelligent text-entry aids, such as error cor-
rection or word prediction. As most of smartphone users seem 
to be using intelligent aids [47], studying this phenomenon is 
an important future work. 

Third, we asked the users to correct all errors, a practice fol-
lowed in some but not all text-entry studies. On one hand, this 
simplifies typing, since one need not regulate which errors 
are to be left as-is and which not, but, on the other, this ren-
ders it more important for the user to check the text display, 
because errors must not be left uncorrected. We believe that 
our main finding will not fundamentally change with the intro-
duction of mobility, intelligent aids, or errors, but these could 
result in different attention sharing strategies. We believe that 
these factors complicate the problem that cognition faces in 
typing, simply because there are more tasks competing for 
visual attention [46]. Thus we expect even larger variability 
in movement strategies and, consequently, in typing perfor-
mance. Fourth, our participants were relatively young adults 
with experience of technology, which is important to keep in 
mind since, for instance, older adults are generally slower at 
typing on smartphones [58]. A study with wider participant 
demographics is warranted for the future. The final caveat 
involves the language in the experiment. While we used a stan-
dard mobile corpus [59], the sentences were translated into 
Finnish, which has unique n-gram distributions and grammar. 
The keyboard layout we used also had two additional umlaut 
characters to the right. We do not expect the role of visual 
attention as reported here to differ greatly because of language, 
but the finger movement paths may vary between languages. 

CONCLUSION 
In this paper, we report rich and detailed finger and eye move-
ment data from mobile typing. We illustrate and discuss the 
role of visual attention in mobile typing, contrasting it to typ-
ing with physical keyboards. To facilitate further research on 
this topic, we have made the software and analysis scripts, 
along with all data and instructions on how to analyze it at 
https://userinterfaces.aalto.fi/how-we-type-mobile/. 

ACKNOWLEDGMENTS 
The research was supported by the Academy of Finland (grant 
numbers 291556, 310947) and the European Research Council 
(grant number 637991). 

Paper 582 Page 10

https://userinterfaces.aalto.fi/how-we-type-mobile/
https://userinterfaces.aalto.fi/how-we-type-mobile/


 CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

REFERENCES 
[1] John R. Anderson, Lynne M. Reder, and Christian 

Lebiere. 1996. Working Memory: Activation 
Limitations on Retrieval. Cognitive Psychology 30, 3 
(June 1996), 221–256. DOI: 
http://dx.doi.org/10.1006/cogp.1996.0007 

[2] Ahmed Sabbir Arif, Sunjun Kim, Wolfgang Stuerzlinger, 
Geehyuk Lee, and Ali Mazalek. 2016. Evaluation of a 
Smart-Restorable Backspace Technique to Facilitate 
Text Entry Error Correction. In Proceedings of the 2016 
CHI Conference on Human Factors in Computing 
Systems (CHI ’16). ACM, New York, NY, USA, 
5151–5162. DOI: 
http://dx.doi.org/10.1145/2858036.2858407 

[3] Shiri Azenkot and Shumin Zhai. 2012. Touch Behavior 
with Different Postures on Soft Smartphone Keyboards. 
In Proceedings of the 14th International Conference on 
Human-computer Interaction with Mobile Devices and 
Services (MobileHCI ’12). ACM, New York, NY, USA, 
251–260. DOI: 
http://dx.doi.org/10.1145/2371574.2371612 

[4] Dana H Ballard, Mary M Hayhoe, Feng Li, and 
Steven D Whitehead. 1992. Hand-eye coordination 
during sequential tasks. Philosophical Transactions of 
the Royal Society of London. Series B: Biological 
Sciences 337, 1281 (1992), 331–339. DOI: 
http://dx.doi.org/10.1098/rstb.1992.0111 

[5] Nikola Banovic, Varun Rao, Abinaya Saravanan, 
Anind K Dey, and Jennifer Mankoff. 2017. Quantifying 
Aversion to Costly Typing Errors in Expert Mobile Text 
Entry. In Proceedings of the 2017 CHI Conference on 
Human Factors in Computing Systems. ACM, 
4229–4241. DOI: 
http://dx.doi.org/10.1145/3025453.3025695 

[6] Joanna Bergstrom-Lehtovirta, Antti Oulasvirta, and 
Stephen Brewster. 2011. The effects of walking speed 
on target acquisition on a touchscreen interface. In 
Proceedings of the 13th International Conference on 
Human Computer Interaction with Mobile Devices and 
Services. ACM, 143–146. 

[7] Xiaojun Bi, Yang Li, and Shumin Zhai. 2013. FFitts 
Law: Modeling Finger Touch with Fitts’ Law. In 
Proceedings of the SIGCHI Conference on Human 
Factors in Computing Systems (CHI ’13). ACM, New 
York, NY, USA, 1363–1372. DOI: 
http://dx.doi.org/10.1145/2470654.2466180 

[8] Matthew Michael Botvinick. 2012. Hierarchical 
reinforcement learning and decision making. Current 
Opinion in Neurobiology 22, 6 (2012), 956–962. 

[9] Shi Cao, Anson Ho, and Jibo He. 2018. Modeling and 
predicting mobile phone touchscreen transcription 
typing using an integrated cognitive architecture. 
International Journal of Human–Computer Interaction 
34, 6 (2018), 544–556. DOI: 
http://dx.doi.org/10.1080/10447318.2017.1373463 

[10] Tania Cerni, Marieke Longcamp, and Remo Job. 2016. 
Two thumbs and one index: A comparison of manual 
coordination in touch-typing and mobile-typing. Acta 
Psychologica 167 (June 2016), 16–23. DOI: 
http://dx.doi.org/10.1016/j.actpsy.2016.03.007 

[11] Mary J. Chapman, Alice F. Healy, and James A. Kole. 
2016. Memory load as a cognitive antidote to 
performance decrements in data entry. Memory 24, 9 
(2016), 1182–1196. DOI: 
http://dx.doi.org/10.1080/09658211.2015.1086380 
PMID: 26390366. 

[12] Edward Clarkson, Kent Lyons, James Clawson, and 
Thad Starner. 2007. Revisiting and Validating a Model 
of Two-thumb Text Entry. In Proceedings of the SIGCHI 
Conference on Human Factors in Computing Systems 
(CHI ’07). ACM, New York, NY, USA, 163–166. DOI: 
http://dx.doi.org/10.1145/1240624.1240650 

[13] James W Cortada. 2000. Before the computer: IBM, 
NCR, Burroughs, and Remington Rand and the industry 
they created, 1865-1956. Princeton University Press. 

[14] Vivek Dhakal, Anna Maria Feit, Per Ola Kristensson, 
and Antti Oulasvirta. 2018. Observations on Typing 
from 136 Million Keystrokes. In Proceedings of the 
2018 CHI Conference on Human Factors in Computing 
Systems (CHI ’18). ACM, New York, NY, USA, Article 
646, 12 pages. DOI: 
http://dx.doi.org/10.1145/3173574.3174220 

[15] M.D. Dunlop and M. Montgomery Masters. 2009. 
Pickup usability dominates: a brief history of mobile 
text entry research and adoption. International Journal 
of Mobile Human Computer Interaction 1, 1 (2009), 
42–59. 

[16] Anna Maria Feit, Daryl Weir, and Antti Oulasvirta. 2016. 
How We Type: Movement Strategies and Performance 
in Everyday Typing. In Proceedings of the 2016 CHI 
Conference on Human Factors in Computing Systems 
(CHI ’16). ACM, New York, NY, USA, 4262–4273. 
DOI: http://dx.doi.org/10.1145/2858036.2858233 

[17] Paul M Fitts. 1954. The information capacity of the 
human motor system in controlling the amplitude of 
movement. Journal of experimental psychology 47, 6 
(1954), 381. DOI: http://dx.doi.org/10.1037/h0055392 

[18] Samuel J Gershman, Eric J Horvitz, and Joshua B 
Tenenbaum. 2015. Computational rationality: A 
converging paradigm for intelligence in brains, minds, 
and machines. Science 349, 6245 (2015), 273–278. DOI: 
http://dx.doi.org/10.1126/science.aac6076 

[19] John D Gould, Sharon L Greene, Stephen J Boies, 
Antonia Meluson, and Marwan Rasamny. 1990. Using a 
touchscreen for simple tasks. Interacting with computers 
2, 1 (1990), 59–74. 

[20] Patricia Marks Greenfield. 1984. Mind and Media: The 
Effects of Television, Video Games, and Computers. 
(1984). 

Paper 582 Page 11

http://dx.doi.org/10.1006/cogp.1996.0007
http://dx.doi.org/10.1006/cogp.1996.0007
http://dx.doi.org/10.1145/2858036.2858407
http://dx.doi.org/10.1145/2858036.2858407
http://dx.doi.org/10.1145/2371574.2371612
http://dx.doi.org/10.1145/2371574.2371612
http://dx.doi.org/10.1098/rstb.1992.0111
http://dx.doi.org/10.1098/rstb.1992.0111
http://dx.doi.org/10.1145/3025453.3025695
http://dx.doi.org/10.1145/3025453.3025695
http://dx.doi.org/10.1145/2470654.2466180
http://dx.doi.org/10.1145/2470654.2466180
http://dx.doi.org/10.1080/10447318.2017.1373463
http://dx.doi.org/10.1080/10447318.2017.1373463
http://dx.doi.org/10.1016/j.actpsy.2016.03.007
http://dx.doi.org/10.1016/j.actpsy.2016.03.007
http://dx.doi.org/10.1080/09658211.2015.1086380
http://dx.doi.org/10.1080/09658211.2015.1086380
http://dx.doi.org/10.1145/1240624.1240650
http://dx.doi.org/10.1145/1240624.1240650
http://dx.doi.org/10.1145/3173574.3174220
http://dx.doi.org/10.1145/3173574.3174220
http://dx.doi.org/10.1145/2858036.2858233
http://dx.doi.org/10.1037/h0055392
http://dx.doi.org/10.1126/science.aac6076
http://dx.doi.org/10.1126/science.aac6076


 CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

[21] Patricia M Greenfield, Patricia DeWinstanley, Heidi 
Kilpatrick, and Daniel Kaye. 1994. Action video games 
and informal education: Effects on strategies for 
dividing visual attention. Journal of applied 
developmental psychology 15, 1 (1994), 105–123. DOI: 
http://dx.doi.org/10.1016/0193-3973(94)90008-6 

[22] Yves Guiard, Halla B. Olafsdottir, and Simon T. 
Perrault. 2011. Fitt’s Law As an Explicit Time/Error 
Trade-off. In Proceedings of the SIGCHI Conference on 
Human Factors in Computing Systems (CHI ’11). ACM, 
New York, NY, USA, 1619–1628. DOI: 
http://dx.doi.org/10.1145/1978942.1979179 

[23] Eve Hoggan, Stephen A. Brewster, and Jody Johnston. 
2008. Investigating the Effectiveness of Tactile Feedback 
for Mobile Touchscreens. In Proceedings of the SIGCHI 
Conference on Human Factors in Computing Systems 
(CHI ’08). ACM, New York, NY, USA, 1573–1582. 
DOI: http://dx.doi.org/10.1145/1357054.1357300 

[24] Paul Holleis, Friederike Otto, Heinrich Hussmann, and 
Albrecht Schmidt. 2007. Keystroke-level Model for 
Advanced Mobile Phone Interaction. In Proceedings of 
the SIGCHI Conference on Human Factors in 
Computing Systems (CHI ’07). ACM, New York, NY, 
USA, 1505–1514. DOI: 
http://dx.doi.org/10.1145/1240624.1240851 

[25] Christian Holz and Patrick Baudisch. 2011. 
Understanding Touch. In Proceedings of the SIGCHI 
Conference on Human Factors in Computing Systems 
(CHI ’11). ACM, New York, NY, USA, 2501–2510. 
DOI: http://dx.doi.org/10.1145/1978942.1979308 

[26] Marc Jeannerod. 1988. The neural and behavioural 
organization of goal-directed movements. Clarendon 
Press/Oxford University Press. 

[27] Charles F. Jekel, Gerhard Venter, Martin P. Venter, 
Nielen Stander, and Raphael T. Haftka. 2019. Similarity 
measures for identifying material parameters from 
hysteresis loops using inverse analysis. International 
Journal of Material Forming 12, 3 (01 May 2019), 
355–378. DOI: 
http://dx.doi.org/10.1007/s12289-018-1421-8 

[28] jkielty. 2019. Viewport, resolution, diagonal screen size 
and DPI for the most popular smartphones. (Jul 2019). 
https://deviceatlas.com/blog/viewport-resolution-dia 
gonal-screen-size-and-dpi-most-popular-smartphones 

[29] Roger Johansson, Åsa Wengelin, Victoria Johansson, 
and Kenneth Holmqvist. 2010. Looking at the keyboard 
or the monitor: relationship with text production 
processes. Reading and Writing 23, 7 (01 Aug 2010), 
835–851. DOI: 
http://dx.doi.org/10.1007/s11145-009-9189-3 

[30] Jussi Jokinen. 2017. Touch Screen Text Entry as 
Cognitively Bounded Rationality. In Proceedings of the 
Annual Cognitive Science Society Meeting. 

[31] Jussi P. P. Jokinen, Sayan Sarcar, Antti Oulasvirta, 
Chaklam Silpasuwanchai, Zhenxin Wang, and Xiangshi 

Ren. 2017. Modelling Learning of New Keyboard 
Layouts. In Proceedings of the 2017 CHI Conference on 
Human Factors in Computing Systems (CHI ’17). ACM, 
New York, NY, USA, 4203–4215. DOI: 
http://dx.doi.org/10.1145/3025453.3025580 

[32] Charles M Judd, Jacob Westfall, and David A Kenny. 
2012. Treating stimuli as a random factor in social 
psychology: A new and comprehensive solution to a 
pervasive but largely ignored problem. Journal of 
personality and social psychology 103, 1 (2012), 54. 
DOI: http://dx.doi.org/10.1037/a0028347 

[33] Kevin S. Killourhy and Roy A. Maxion. 2012. Free vs. 
Transcribed Text for Keystroke-dynamics Evaluations. 
In Proceedings of the 2012 Workshop on Learning from 
Authoritative Security Experiment Results (LASER ’12). 
ACM, New York, NY, USA, 1–8. DOI: 
http://dx.doi.org/10.1145/2379616.2379617 

[34] Per Ola Kristensson. 2009. Five challenges for 
intelligent text entry methods. AI Magazine 30, 4 (2009), 
85–85. DOI: 
http://dx.doi.org/10.1609/aimag.v30i4.2269 

[35] Tuomo Kujala, Jakke Mäkelä, Ilkka Kotilainen, and 
Timo Tokkonen. 2016. The attentional demand of 
automobile driving revisited: occlusion distance as a 
function of task-relevant event density in realistic 
driving scenarios. Human factors 58, 1 (2016), 163–180. 
DOI: http://dx.doi.org/10.1177/0018720815595901 

[36] Richard L Lewis, Andrew Howes, and Satinder Singh. 
2014. Computational rationality: Linking mechanism 
and behavior through bounded utility maximization. 
Topics in cognitive science 6, 2 (2014), 279–311. DOI: 
http://dx.doi.org/10.1111/tops.12086 

[37] Yilin Li, Baochang Zhang, Yao Cao, Sanqiang Zhao, 
Yongsheng Gao, and Jianzhuang Liu. 2011. Study on the 
BeiHang Keystroke Dynamics Database. In 2011 
International Joint Conference on Biometrics (IJCB). 
IEEE. DOI: 
http://dx.doi.org/10.1109/ijcb.2011.6117485 

[38] Gordon D. Logan. 2018. Automatic control: How 
experts act without thinking. Psychological Review 125, 
4 (July 2018), 453–485. DOI: 
http://dx.doi.org/10.1037/rev0000100 

[39] Gordon D Logan and Matthew JC Crump. 2011. 
Hierarchical control of cognitive processes: The case for 
skilled typewriting. In Psychology of learning and 
motivation. Vol. 54. Elsevier, 1–27. DOI: 
http://dx.doi.org/10.1016/b978-0-12-385527-5.00001-2 

[40] Yiqin Lu, Chun Yu, Shuyi Fan, Xiaojun Bi, and 
Yuanchun Shi. 2019. Typing on Split Keyboards with 
Peripheral Vision. In Proceedings of the 2019 CHI 
Conference on Human Factors in Computing Systems 
(CHI ’19). ACM, New York, NY, USA, Article 200, 12 
pages. DOI: 
http://dx.doi.org/10.1145/3290605.3300430 

Paper 582 Page 12

http://dx.doi.org/10.1016/0193-3973(94)90008-6
http://dx.doi.org/10.1016/0193-3973(94)90008-6
http://dx.doi.org/10.1145/1978942.1979179
http://dx.doi.org/10.1145/1978942.1979179
http://dx.doi.org/10.1145/1357054.1357300
http://dx.doi.org/10.1145/1240624.1240851
http://dx.doi.org/10.1145/1240624.1240851
http://dx.doi.org/10.1145/1978942.1979308
http://dx.doi.org/10.1007/s12289-018-1421-8
http://dx.doi.org/10.1007/s12289-018-1421-8
https://deviceatlas.com/blog/viewport-resolution-diagonal-screen-size-and-dpi-most-popular-smartphones
https://deviceatlas.com/blog/viewport-resolution-diagonal-screen-size-and-dpi-most-popular-smartphones
https://deviceatlas.com/blog/viewport-resolution-diagonal-screen-size-and-dpi-most-popular-smartphones
http://dx.doi.org/10.1007/s11145-009-9189-3
http://dx.doi.org/10.1007/s11145-009-9189-3
http://dx.doi.org/10.1145/3025453.3025580
http://dx.doi.org/10.1145/3025453.3025580
http://dx.doi.org/10.1037/a0028347
http://dx.doi.org/10.1145/2379616.2379617
http://dx.doi.org/10.1145/2379616.2379617
http://dx.doi.org/10.1609/aimag.v30i4.2269
http://dx.doi.org/10.1609/aimag.v30i4.2269
http://dx.doi.org/10.1177/0018720815595901
http://dx.doi.org/10.1111/tops.12086
http://dx.doi.org/10.1111/tops.12086
http://dx.doi.org/10.1109/ijcb.2011.6117485
http://dx.doi.org/10.1109/ijcb.2011.6117485
http://dx.doi.org/10.1037/rev0000100
http://dx.doi.org/10.1037/rev0000100
http://dx.doi.org/10.1016/b978-0-12-385527-5.00001-2
http://dx.doi.org/10.1016/b978-0-12-385527-5.00001-2
http://dx.doi.org/10.1145/3290605.3300430
http://dx.doi.org/10.1145/3290605.3300430


 CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

[41] I Scott MacKenzie and R William Soukoreff. 2002a. A 
model of two-thumb text entry. In Graphics interface. 
117–124. 

[42] I Scott MacKenzie and R William Soukoreff. 2002b. 
Text entry for mobile computing: Models and methods, 
theory and practice. Human–Computer Interaction 17, 
2-3 (2002), 147–198. 

[43] John A Michon. 1985. A critical view of driver behavior 
models: what do we know, what should we do? In 
Human behavior and traffic safety. Springer, 485–524. 

[44] Urpo Nikanne. 2017. Finite Sentences In Finnish: Word 
Order, Morphology, And Information Structure. (2017). 
DOI: http://dx.doi.org/10.5281/zenodo.1117710 

[45] Antti Oulasvirta, Anna Reichel, Wenbin Li, Yan Zhang, 
Myroslav Bachynskyi, Keith Vertanen, and Per Ola 
Kristensson. 2013. Improving Two-thumb Text Entry on 
Touchscreen Devices. In Proceedings of the SIGCHI 
Conference on Human Factors in Computing Systems 
(CHI ’13). ACM, New York, NY, USA, 2765–2774. 
DOI: http://dx.doi.org/10.1145/2470654.2481383 

[46] Antti Oulasvirta, Sakari Tamminen, Virpi Roto, and 
Jaana Kuorelahti. 2005. Interaction in 4-second Bursts: 
The Fragmented Nature of Attentional Resources in 
Mobile HCI. In Proceedings of the SIGCHI Conference 
on Human Factors in Computing Systems (CHI ’05). 
ACM, New York, NY, USA, 919–928. DOI: 
http://dx.doi.org/10.1145/1054972.1055101 

[47] Kseniia Palin, Anna Feit, Sunjun Kim, Per Ola 
Kristensson, and Antti Oulasvirta. 2019. How do People 
Type on Mobile Devices? Observations from a Study 
with 37,000 Volunteers. In Proceedings of 21st 
International Conference on Human-Computer 
Interaction with Mobile Devices and Services 
(MobileHCI’19). ACM. DOI: 
http://dx.doi.org/https://doi.org/10.475/123_4 

[48] Alexandra Papoutsaki, Aaron Gokaslan, James Tompkin, 
Yuze He, and Jeff Huang. 2018. The Eye of the Typer: A 
Benchmark and Analysis of Gaze Behavior During 
Typing. In Proceedings of the 2018 ACM Symposium on 
Eye Tracking Research & Applications (ETRA ’18). 
ACM, New York, NY, USA, Article 16, 9 pages. DOI: 
http://dx.doi.org/10.1145/3204493.3204552 

[49] Ken Pfeuffer and Yang Li. 2018. Analysis and Modeling 
of Grid Performance on Touchscreen Mobile Devices. In 
Proceedings of the 2018 CHI Conference on Human 
Factors in Computing Systems (CHI ’18). ACM, New 
York, NY, USA, Article 288, 12 pages. DOI: 
http://dx.doi.org/10.1145/3173574.3173862 

[50] Philip Quinn and Shumin Zhai. 2016. A Cost-Benefit 
Study of Text Entry Suggestion Interaction. In 
Proceedings of the 2016 CHI Conference on Human 
Factors in Computing Systems (CHI ’16). ACM, New 
York, NY, USA, 83–88. DOI: 
http://dx.doi.org/10.1145/2858036.2858305 

[51] Shyam Reyal, Shumin Zhai, and Per Ola Kristensson. 
2015. Performance and user experience of touchscreen 
and gesture keyboards in a lab setting and in the wild. In 
Proceedings of the 33rd Annual ACM Conference on 
Human Factors in Computing Systems. ACM, 679–688. 

[52] Martina Rieger and Victoria Bart. 2016. Typing Style 
and the Use of Different Sources of Information during 
Typing: An Investigation Using Self-Reports. Frontiers 
in Psychology 7 (12 2016), 1–12. DOI: 
http://dx.doi.org/10.3389/fpsyg.2016.01908 

[53] Uta Sailer, J Randall Flanagan, and Roland S Johansson. 
2005. Eye–hand coordination during learning of a novel 
visuomotor task. Journal of Neuroscience 25, 39 (2005), 
8833–8842. DOI: 
http://dx.doi.org/10.1523/jneurosci.2658-05.2005 

[54] Timothy A. Salthouse. 1984. Effects of age and skill in 
typing. Journal of Experimental Psychology: General 
113, 3 (1984), 345–371. DOI: 
http://dx.doi.org/10.1037/0096-3445.113.3.345 

[55] Timothy A. Salthouse. 1986. Perceptual, cognitive, and 
motoric aspects of transcription typing. Psychological 
Bulletin 99, 3 (1986), 303–319. DOI: 
http://dx.doi.org/10.1037/0033-2909.99.3.303 

[56] Sayan Sarcar, Jussi PP Jokinen, Antti Oulasvirta, 
Zhenxin Wang, Chaklam Silpasuwanchai, and Xiangshi 
Ren. 2018. Ability-based optimization of touchscreen 
interactions. IEEE Pervasive Computing 17, 1 (2018), 
15–26. DOI: 
http://dx.doi.org/10.1109/mprv.2018.011591058 

[57] Andrew Sears, Julie A Jacko, Josey Chu, and Francisco 
Moro. 2001. The role of visual search in the design of 
effective soft keyboards. Behaviour & Information 
Technology 20, 3 (2001), 159–166. DOI: 
http://dx.doi.org/10.1080/01449290110049790 

[58] Amanda L Smith and Barbara S Chaparro. 2015. 
Smartphone text input method performance, usability, 
and preference with younger and older adults. Human 
factors 57, 6 (2015), 1015–1028. DOI: 
http://dx.doi.org/10.1177/0018720815575644 

[59] Keith Vertanen and Per Ola Kristensson. 2011. A 
versatile dataset for text entry evaluations based on 
genuine mobile emails. In Proceedings of the 13th 
International Conference on Human Computer 
Interaction with Mobile Devices and Services. ACM, 
ACM Press, 295–298. DOI: 
http://dx.doi.org/10.1145/2037373.2037418 

[60] Pierre Weill-Tessier and Hans Gellersen. 2018. Touch 
Input and Gaze Correlation on Tablets. In Intelligent 
Decision Technologies 2017, Ireneusz Czarnowski, 
Robert J. Howlett, and Lakhmi C. Jain (Eds.). Springer 
International Publishing, Cham, 287–296. 

[61] Pierre Weill-Tessier, Jayson Turner, and Hans Gellersen. 
2016. How Do You Look at What You Touch?: A Study 
of Touch Interaction and Gaze Correlation on Tablets. In 
Proceedings of the Ninth Biennial ACM Symposium on 

Paper 582 Page 13

http://dx.doi.org/10.5281/zenodo.1117710
http://dx.doi.org/10.1145/2470654.2481383
http://dx.doi.org/10.1145/1054972.1055101
http://dx.doi.org/10.1145/1054972.1055101
http://dx.doi.org/https://doi.org/10.475/123_4
http://dx.doi.org/https://doi.org/10.475/123_4
http://dx.doi.org/10.1145/3204493.3204552
http://dx.doi.org/10.1145/3204493.3204552
http://dx.doi.org/10.1145/3173574.3173862
http://dx.doi.org/10.1145/3173574.3173862
http://dx.doi.org/10.1145/2858036.2858305
http://dx.doi.org/10.1145/2858036.2858305
http://dx.doi.org/10.3389/fpsyg.2016.01908
http://dx.doi.org/10.3389/fpsyg.2016.01908
http://dx.doi.org/10.1523/jneurosci.2658-05.2005
http://dx.doi.org/10.1523/jneurosci.2658-05.2005
http://dx.doi.org/10.1037/0096-3445.113.3.345
http://dx.doi.org/10.1037/0096-3445.113.3.345
http://dx.doi.org/10.1037/0033-2909.99.3.303
http://dx.doi.org/10.1037/0033-2909.99.3.303
http://dx.doi.org/10.1109/mprv.2018.011591058
http://dx.doi.org/10.1109/mprv.2018.011591058
http://dx.doi.org/10.1080/01449290110049790
http://dx.doi.org/10.1080/01449290110049790
http://dx.doi.org/10.1177/0018720815575644
http://dx.doi.org/10.1177/0018720815575644
http://dx.doi.org/10.1145/2037373.2037418
http://dx.doi.org/10.1145/2037373.2037418


 CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Eye Tracking Research & Applications (ETRA ’16). 
ACM, New York, NY, USA, 329–330. DOI: 
http://dx.doi.org/10.1145/2857491.2888592 

[62] R William Soukoreff and I Scott Mackenzie. 1995. 
Theoretical upper and lower bounds on typing speed 
using a stylus and a soft keyboard. Behaviour & 
Information Technology 14, 6 (1995), 370–379. DOI: 
http://dx.doi.org/10.1080/01449299508914656 

[63] Katharina Witowski and Nielen Stander. 2012. 
Parameter Identification of Hysteretic Models Using 
Partial Curve Mapping. In 12th AIAA Aviation 
Technology, Integration, and Operations (ATIO) 
Conference and 14th AIAA/ISSMO Multidisciplinary 

Analysis and Optimization Conference. American 
Institute of Aeronautics and Astronautics. DOI: 
http://dx.doi.org/10.2514/6.2012-5580 

[64] Jacob O. Wobbrock. 2007. Measures of Text Entry 
Performance. In Text Entry Systems. Elsevier, 47–74. 
DOI: 
http://dx.doi.org/10.1016/b978-012373591-1/50003-6 

[65] Motonori Yamaguchi and Gordon D. Logan. 2014. 
Pushing typists back on the learning curve: Revealing 
chunking in skilled typewriting. Journal of Experimental 
Psychology: Human Perception and Performance 40, 2 
(2014), 592–612. DOI: 
http://dx.doi.org/10.1037/a0033809 

Paper 582 Page 14

http://dx.doi.org/10.1145/2857491.2888592
http://dx.doi.org/10.1145/2857491.2888592
http://dx.doi.org/10.1080/01449299508914656
http://dx.doi.org/10.1080/01449299508914656
http://dx.doi.org/10.2514/6.2012-5580
http://dx.doi.org/10.2514/6.2012-5580
http://dx.doi.org/10.1016/b978-012373591-1/50003-6
http://dx.doi.org/10.1016/b978-012373591-1/50003-6
http://dx.doi.org/10.1037/a0033809
http://dx.doi.org/10.1037/a0033809

	Introduction
	Related Work
	Typing with a Physical Keyboard
	Typing on Mobile Touchscreen Keyboards
	Theories and Models

	Method
	Participants
	Experiment Design
	Materials
	Procedure
	Data Collection and Preprocessing
	Metrics

	Results
	Typing Performance
	Finger Movement
	Global finger movement
	Finger-to-key mapping
	Finger preparation
	Finger alternation

	Eye–hand Coordination
	Eye–hand distance
	Eye–hand following

	Proofreading and Error Correction
	Gaze-shifting
	Correction of errors


	Discussion
	Limitations and Future Work
	Conclusion
	Acknowledgments
	References 



