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1 Introduction

This document forms the supplementary material accompanying the paper submitted to CHI 2020. It
provides the complete core mixed integer linear programming formulation outlined in our paper.

2 Core Mixed Integer Linear Programming Formulation

2.1 Notations and Terminologies

The origin of axes is assumed to be at the top left corner of the canvas, with Y-axis downward positive
and X-axis rightwards positive. The following sets and indices are defined for the problem:

1. Size of canvas −→ Width W and Height H

2. Set of all elements to be placed −→ E , where ‖E ‖ = n

3. Indices for element −→ e and ē

4. Maximum prescribed width of Element e −→ Wmax
e

5. Maximum prescribed height of Element e −→ Hmax
e

6. Minimum prescribed width of Element e −→ Wmin
e

7. Minimum prescribed height of Element e −→ Hmin
e

8. Prescribed aspect ratio (width/height) of Element e −→ Re This is an optional parameter.
It is possible that aspect ratio is not specified for some or all element. Unspecified aspect ratios
indicate that the widths and heights of such element need not be linked.
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2.2 Decision variables

The decision variables governing the MILP are as follows:

Le := Placement of Left edge of Element e

Re := Placement of Right edge of Element e

Te := Placement of Top edge of Element e

Be := Placement of Bottom edge of Element e

We := Actual width of Element e

He := Actual Height of Element e

V i
T := Value (distance) of the TG i

V i
B := Value (distance) of the BG i

V i
L := Value (distance) of the LG i

V i
R := Value (distance) of the RG i

αe
i :=

{
1 . . . if element e belongs to TG i
0 . . . Otherwise

βe
i :=

{
1 . . . if element e belongs to BG i
0 . . . Otherwise

γei :=

{
1 . . . if element e belongs to LG i
0 . . . Otherwise

δei :=

{
1 . . . if element e belongs to RG i
0 . . . Otherwise

εiT :=

{
1 . . . if TG i is actually used
0 . . . if TG i is not used

εiR :=

{
1 . . . if RG i is actually used
0 . . . if RG i is not used

εiB :=

{
1 . . . if BG i is actually used
0 . . . if BG i is not used

εiL :=

{
1 . . . if LG i is actually used
0 . . . if LG i is not used

We can enforce several families of constraints based on these decision variables. Primarily, we define the
element sizes and the aspect ratio.

0 ≤ Le ≤W −Wmin
e . . . ∀ e ∈ E (1)

0 ≤ Te ≤ H −Hmin
e . . . ∀ e ∈ E (2)

We = Re − Le . . . ∀ e ∈ E (3)

He = Be − Te . . . ∀ e ∈ E (4)

Wmin
e ≤We ≤Wmax

e . . . ∀ e ∈ E (5)

Hmin
e ≤ He ≤ Hmax

e . . . ∀ e ∈ E (6)

He = Re We . . . ∀ e ∈ E (7)

While other constraints listed above are self-explanatory, we discuss Equation (7) further. For images or
pictures, the aspect ratio is strict and must be specified as an equality constraint. However, for other UI
elements (such as text-fields), the aspect ratio is often an approximate guideline rather than an precise
specification. In such cases, Equation (7) can be replaced by two inequality constraints that restrict the
actual aspect ratio to be within a permissible interval around the specified value.

2



Next, we enforce every element to belong to exactly four alignment-groups (one of every type):

∑
i

βe
i = 1 . . . ∀e ∈ E (8)∑

i

αe
i = 1 . . . ∀e ∈ E (9)∑

i

γei = 1 . . . ∀e ∈ E (10)∑
i

δei = 1 . . . ∀e ∈ E (11)

Next, we enforce the dimensions and locations of elements to match their alignment-groups:

Le ≥ V i
L −W (1− γei ) . . . ∀e ∈ E ,∀i (12)

Le ≤ V i
L + W (1− γei ) . . . ∀e ∈ E ,∀i (13)

Re ≥ V i
R −W (1− δei ) . . . ∀e ∈ E ,∀i (14)

Re ≤ V i
R + W (1− δei ) . . . ∀e ∈ E ,∀i (15)

Te ≥ V i
T −H (1− αe

i ) . . . ∀e ∈ E ,∀i (16)

Te ≤ V i
T + H (1− αe

i ) . . . ∀e ∈ E ,∀i (17)

Be ≥ V i
B −H (1− βe

i ) . . . ∀e ∈ E ,∀i (18)

Be ≤ V i
B + H (1− βe

i ) . . . ∀e ∈ E ,∀i (19)

We also introduce several interconnecting constraints to ensure that the values of decision variables are
logically correlated with each other:

‖ E ‖ εiB ≥
∑
e∈E

βe
i . . . ∀i (20)

‖ E ‖ εiT ≥
∑
e∈E

αe
i . . . ∀i (21)

‖ E ‖ εiL ≥
∑
e∈E

γei . . . ∀i (22)

‖ E ‖ εiR ≥
∑
e∈E

δei . . . ∀i (23)

εiB ≤
∑
e∈E

βe
i . . . ∀i (24)

εiT ≤
∑
e∈E

αe
i . . . ∀i (25)

εiL ≤
∑
e∈E

γei . . . ∀i (26)

εiR ≤
∑
e∈E

δei . . . ∀i (27)

The above equations ensure that the the values of ε are 1 if and only if one or more elements are aligned
to the concerned grid line.

We also know some bounds on the minimum permissible number of alignment-groups that will be re-
quired. While the following constraints are not strictly necessary for the optimizer, they help in improv-
ing the performance of branch-and-bound tree by avoiding search spaces where integer-feasible solutions
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cannot exist: ∑
i

εiT +
∑
i

εiL ≥ 2 ∗
√
‖ E ‖ (28)∑

i

εiT +
∑
i

εiR ≥ 2 ∗
√
‖ E ‖ (29)∑

i

εiB +
∑
i

εiL ≥ 2 ∗
√
‖ E ‖ (30)∑

i

εiB +
∑
i

εiR ≥ 2 ∗
√
‖ E ‖ (31)

Next, we consider the transition distances (Manhattan distance instead of Euclidean) between any specific
pair of elements. We use the following decision variables to capture this distance:

DXeē := Minimum horizontal distance between eand ē

DYeē := Minimum vertical distance between eand ē

The distances are calculated by the following constraints:

DXeē ≥ Le − Lē −Wē . . . ∀e, ē ∈ E (32)

DXeē ≥ Lē − Le −We . . . ∀e, ē ∈ E (33)

DYeē ≥ Te − Tē −Hē . . . ∀e, ē ∈ E (34)

DYeē ≥ Tē − Te −He . . . ∀e, ē ∈ E (35)

The decision variables listed above are sufficient to capture the alignment aspect of objective functions
as discussed earlier. Minimization of summation of εB , εT , εR, εL will ensure a well-aligned layout of
all elements. The distance variables DX,DY allow a direct minimization of the weighted transition
distances. In conjunction with alignment-groups, this ensures that closely inter-related elements be
placed aligned and in close proximity.

Lastly, we look at our objective of ensuring an overall rectangular outline for the external hull. We do
not introduce any new decision variables for this; instead we use our existing alignment groups with the
additional intention.

Our intuition here is that the smallest rectangular outline (SRO) is exactly defined by the four extreme
alignment groups. For example, the smallest possible value of VL represents the left-most gridline and
this matches the left edge of the SRO. Similarly, the smallest value of VT in conjunction with the largest
values of VB and VR define the SRO completely. For notation purpose, we restrict that the extreme
alignment groups be defined by index 0 each (i.e. V 0

L , V 0
R, V 0

T , V 0
B). Then we can specify that ε0L = ε0R

= ε0T = ε0B = 1. We enforce these designated gridlines to indeed be used at extremities by using the
following constraints:

V 0
L ≤ V i

L . . . ∀ i 6= 0 (36)

V 0
T ≤ V i

T . . . ∀ i 6= 0 (37)

V 0
R ≥ V i

R . . . ∀ i 6= 0 (38)

V 0
B ≥ V i

B . . . ∀ i 6= 0 (39)

(40)

In light of this notation for the extreme gridlines, we now consider the group-membership variables γ0, δ0,
α0, β0. If any element ehas any one of its edges aligned with the SRO, it must have the corresponding
group-membership variable to be 1. On the contrary, 0 value for all these extreme gridline variables
indicates an element at the interior of the layout. This fact can be used (as explained in Section 4 of the
paper).

For example, the first option of rewarding any adherence to rectangular extremities is enforced by
maximizing the summation of γ0, δ0, α0 and β0 over all elements. After this optima Rmin is calculated
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in Step 5 of Algorithm 1, it is enforced as a constraint from step 6 onwards to ensure overall rectangular
alignment. There are potential pifalls to this approach; in larger and complex instances, the optimizer
prefers solutions where smaller sized elements are at the periphery and larger sized elements are in the
interior of the layout. For such cases, the other options specified for enforcing rectangularity can be
similarly enforced.
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