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Graphical user interfaces (GUIs) have gained primacy among the means of interacting with computing systems,
thanks to the way they leverage human perceptual and motor capabilities. However, the design of GUIs has
mostly been a manual activity. To design a GUI, the designer must select its visual, spatial, textual, and
interaction properties such that the combination strikes a balance among the relevant human factors. While
emerging computational-design techniques have addressed some problems related to grid layouts, no general
approach has been proposed that can also produce good and complete results covering color-related decisions
and other nonlinear design objectives. Evolutionary algorithms are promising and demonstrate good handling
of similar problems in other conditions, genetic operators, depending on how they are designed. But even these
approaches struggle with elements’ overlap and hence produce too many infeasible candidate solutions. This
paper presents a new approach based on grid-based genetic operators demonstrated in a non-dominated sorting
genetic algorithm (NSGA-III) setting. The operators use grid lines for element positions in a novel manner to
satisfy overlap-related constraints and intrinsically improve the alignment of elements. This approach can be
used for crossovers and mutations. Its core benefit is that all the solutions generated satisfy the no-overlap
requirement and represent well-formed layouts. The new operators permit using genetic algorithms for
increasingly realistic task instances, responding to more design objectives than could be considered before.
Specifically, we address grid quality, alignment, selection time, clutter minimization, saliency control, color
harmony, and grouping of elements.
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1 INTRODUCTION
The graphical user interface, or GUI, has become the most prevalent user interface for computing
systems. The process of designing GUIs remains a time-consuming, challenging, and mostly manual
activity. The difficulty arises from the large design spaces and from the presence of multiple
objectives [55, 62]. This large design space is due to the combinatorial complexity of problem.
For example, consider a canvas with 1024 × 768 pixels, then divide the canvas into 32 × 24 pixels.
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(a) Alignment (b) Selection time (c) Clutter – element size (d) Clutter – element color

(e) Saliency – element size (f) Saliency – element color (g) Color harmony (h) Grouping of elements

Fig. 1. An illustration of design objectives in GUI design. Optimizing for any one of these separately does not
yield good results. Our work permits more efficient use of genetic algorithms to produce GUI designs for any
combination of such nonlinear and linear objectives.

Consequently, there are about 2.6e+14 different combinations of positions for only 5 elements.
If other features of the elements, such as size, color and grouping are required, the number of
different solutions will explode. Computational methods could assist designers with the creative
process by producing designs or sketches automatically. While combinatorial optimization offers
a natural representation for the design problem, results have been limited to well-isolated parts
of the general problem, such as widget layouts, keyboards and keypads, grid layouts, and tiled
information displays [72]. What is missing is an optimization method that would allow dealing
with the complexity of the large design space, multiple objective functions, and with good results.

While GUI problem is related to known problems in operations research and optimization, it also
has some unique nuances. The closest comparable example is the facility layout problems (FLPs)
[83]; here, the choices of facility sizes and positions optimize certain objective functions (e.g., for
minimization of material-handling costs) [42]. The facilities’ coloring is not among the decision
variables and objectives of FLP; however, in the domain of GUI design, colors play a crucial role
[19, 21, 91]. They emphasize important information, guide attention, influence visual appeal, and
help users identify subgroups [65]. Colors are typically computed with nonlinear objectives, and
their values can only be determined in the context of other colors and mutual distances on a display
(e.g., in terms of saliency and clutter objectives).

In this paper, the graphical layout problem is addressed as a matter of 1) organizing graphical
elements on a canvas – including choosing their positions and sizes – and 2) coloring them in a
visually appealing, use-supporting manner. Consider a news page online. The design task consists
of placing given elements – such as images, videos, headlines, text content, navigation support,
and advertisements – on a canvas and deciding on their sizes. Also, these elements should be
grouped into larger entities, to afford perceptual understanding of the page’s structure. Finally, their
colors and possibly other visual properties should be chosen. We approach this as a many-objective
optimization problem wherein the objective functions may be anything that assigns a numerical
score to a design (the literature provides a good review of objective functions, which range from
linear functions to nonlinear ones and simulator-based models [72]). Flexible “plug and play” for
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objectives is crucial to practical deployment, wherein designers may want to adjust the emphasis
among objectives case-specifically. Formulated thus, our problem is an extension of the general
FLP. Our approach can be used for a variety of audiences. For example, it could help interaction
designers to explore more solutions when sketching and release resources from lower-level editing
[20]. It could also help end-users by personalizing or customizing UI layouts [34, 73, 96]. Here, we
consider the eight design criteria in Figure 1, an example beyond the reach of previous work. This
paper focuses on static user interfaces (UIs). Dynamically changing UIs are out of the scope of the
paper.
Because multiple nonlinear objectives are involved, nature-inspired algorithms [94], especially

genetic algorithms, offer a promising approach. They can solve many-objective problems, and, in
contrast to some classical optimization methods [28], all objectives are evaluated simultaneously.
This helps the designer identify not merely a single optimal design but several on the Pareto front
and, thereby, make choices that better consider the tradeoffs involved.

Notwithstanding the success of evolutionary algorithms for similar problems elsewhere, genetic
operators (including mutation and crossover operators) struggle with overlap of elements so yield
too many infeasible candidate solutions. Our work extends genetic operators, via a grid-based
concept, to deal with graphical layouts more efficiently. These operators render a non-dominated
sorting genetic algorithm (NSGA-III) [25] more efficient, to obtain approximated Pareto-front
solutions. Though the grid operators we propose are useful more generally, we picked NSGA-III
for its value as a known, powerful evolutionary algorithm for many-objective problems [12, 59, 78].
It has demonstrated its efficiency in tackling diverse problems: economical X-bar control chart
design [87], hydro-thermal-wind scheduling [95], software refactoring [68], feature selection for
intrusion-detection systems [99], and others.

This paper presents grid-based operators to facilitate the use of genetic algorithms, particularly
with regard to the overlap constraint. Generating non-overlapping layouts helps the optimizer not
waste computation time on identifying which solutions satisfy this constraint. As we show, this
yields a significant boost to their performance that is of great practical value.

Our concept of grid operators is based on the idea of alignment. One of the main objectives in
GUI design is to align elements along grid lines. These lines are used in design to form a layout,
create balance, organize the elements, and keep the layout flexible for future changes [63]. Our
grid-based operators offer three benefits. Primarily, the rest of the algorithm can work as it is;
thanks to the grid approach, it need not consider these constraints. Next, as we show, they expedites
convergence. Lastly, they automatically reduce unnecessary white space among elements, so the
resulting layouts look more compact and appealing.
In summary, our main contribution lies in grid-based operators that significantly improve the

efficiency of genetic algorithms (NSGA-III in our case) in tackling the GUI design problem. This
improves the general crossover and mutation operators by means of the concept of grid lines. We
demonstrate the approach with design problems that encompass more objective functions than
grappled with previously.

The discussion proceeds as follows: Four main categories of literature are identified and described,
in Section 2, after which Section 3 expresses the problem definition and the objective functions.
Our proposed grid operators and a methodology overview are presented in Section 4; then, Section
5 discusses the computational performance of the algorithm and illustrates a concrete application
problem. The paper concludes with a summary of contributions and suggestions for future work.
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2 RELATEDWORK
We discuss the literature related to GUI design in terms of four classes: computational design
of graphical user interfaces, related layout problems (facility layouts especially), many-objective
optimization methods, and operators in genetic algorithms.

2.1 Computational Design of GUIs
Existing literature on computational design of GUIs covers twomajor approaches. Firstly, interaction
techniques have been proposed to facilitate editing of layouts in design tools. Bier and Stone [8]
suggested snap-dragging, which places GUI elements on grid lines automatically with the aid of a
ruler-and-compass heuristic while designing the global layout remains the designer’s task. Imagine
[69] is an interactive GA tool for generating the style of HTML sheets. Gajos and Weld [34] used
a branch-and-bound (B&B) optimization technique to generate personalized a single layout for
the end-user via their SUPPLE system. Jiang et al. [48] decreased the computational time of B&B
algorithm with heuristic preprocessing. Swearngin et al. [86] suggested an exploration algorithm
with high-level design constraints which helps designers to quickly find alternative designs. Frisch
et al. [33] presented interactive grids and multi-touch alignment guides, and Xu et al. [92] described
an alignment method for decreasing the ambiguity of elements. Masson et al. [66] proposed an
evolutionary system to improve creativity designs, and Yanagida et al. [93] used a flexible widget
layout to personalize GUIs. Recently, neural networks have been applied, such as content-aware
deep generative model (Zheng et al. [97]), generative adversarial networks (Li et al. [60, 61]), and
neural design networks (Lee et al. [58]), to generate layouts.
In the context of menu layout design, Bouzit et al. [9] employed Bertin’s eight visual variables

[7] to interactively help the designer to explore the design space via choosing different values
for these visual variables. Goubko and Danilenko [37] presented a mathematical hierarchical
menu optimization based on the navigation time. Then, Goubko and Varnavsky [36] suggested
user’s preference share instead of navigation time criterion to optimize their menu design. These
approaches address only part of the full layout-problem space.
Algorithmic methods, in turn, produce full layouts through application of grids. All papers but

one have ignored coloring, however. A recent review of combinatorial-optimization-based methods
for GUI design does not cite a single approach that proves able to deal with objectives that designers
typically need to address in GUI design – including layout and coloring [72]. Recently, Dayama et al.
[23] proposed a method based on mixed integer programming. Their model considers preferential
positioning of elements and uses a space-spanning [89] approach to find diverse solutions. The
lack of a comprehensive optimization system implies that interactive methods are needed, to add
those decisions not covered. One exception is found in the work of Todi et al. [88], who suggested
an interactive optimizer for a “sketch-and-explore” approach. Their method, using a multi-touch
sketching tool, can generate layouts in real time by using five predictive models and a variable-
neighborhood-search-based optimizer. From a designer-sketched wireframe, the tool computes
alternative layouts to aid in the ideation process. However, the authors acknowledged significant
computational issues with larger layout sizes, as the number of elements grows beyond 10. To the
best of our knowledge, the literature has not identified any computational method for modeling
this problem whereby multiple graphical layouts are automatically generated for a set of several
objectives that includes color.

2.2 Related Layout Problems
The most relevant problem in the mathematical-optimization field is the unequal-area facility layout
problem (UA-FLP). The UA-FLP was first formulated as a quadratic assignment problem (QAP) [57]
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wherein the goal is to minimize the total cost of material-handling [4]. It is an NP-hard problem
[35], and exact algorithms can find the optimal design for only small and medium-sized instances
in reasonable time [74]. For example, Castillo et al. [10] proposed a cutting-plane method to solve
a one-objective UA-FLP for up to nine facilities. In another study, Chae and Regan [11] reached
optimal values for up to 12 facilities. Several heuristic and meta-heuristic approaches have been
presented [50, 56, 76]. A recent survey by Hosseini-Nasab et al. [42] provides further details of
these.
The GUI design problem is distinct from the UA-FLP in three main respects: Adding coloring

requires adding nonlinear objectives – e.g., optimizing for color harmony and saliency. Secondly,
aligning each element with all others is different from deciding on element locations one by one, in
a local neighborhood, or pairwise. Finally, the GUI problem is characteristically a many-objective
problem.

2.3 Approaches to Many-Objective Problems
In most real-world design problems, the decision-making involves more than one objective, and,
rather than one optimal solution, there is a set of optimal solutions: the Pareto front. In other words,
improving the value for one objective leads to worse results in relation to at least one other objective.
We discuss two general approaches to problems with up to three objectives (multi-objective models):
classical and evolutionary [18]. Among the former, weighted-sum and 𝜖-constraint methods are
some of the most popular [28]. Methods in this class have four shortcomings: 1) multiple runs
are required for finding the Pareto front; 2) in cases of non-convex problems, one cannot obtain
the full Pareto front; 3) these methods are sensitive to the Pareto front’s shape (e.g., concave or
disconnected); and 4) nonlinear problems require linear approximation techniques [53]. Since the
problem discussed in this paper is nonlinear and many-objective, classical methods are not ideal.

Heuristic and meta-heuristic algorithms (e.g., evolutionary methods) emerged as an alternative
to classical algorithms, for overcoming these disadvantages [98]. They are easier to implement,
have broad applicability, and can be robust to dynamic changes [30]. For multi-objective problems,
often-successful algorithms such as multi-objective particle swarm optimization [79], multiple-
objective ant colony optimization [2], and non-dominated sorting genetic algorithm II [26] have
been suggested. However, they are recognized as scaling up poorly: as the number of objectives
rises, the efficiency of these algorithms decreases, and they cannot find a diverse set of Pareto-front
solutions [29, 45]. Therefore, a new generation of algorithms has been presented for problems with
more than three objectives, known as many-objective problems [59].
This new generation of algorithms is capable of approximating the diversity of Pareto front

solutions through introducing new approaches such as relaxed domination, diversity approach, or
reference-point approach [59]. The interested reader is referred to a recent review [24] for detailed
description. In this paper, we address eight distinct objectives (discussed in Section 3) and propose
an extension to genetic algorithms for better handling of many-objective cases for layout problems.
We have implemented our grid operators for the reference-point algorithm NSGA-III [25] (see
Section 4). As far as we are aware, onlymulti-objective problems have previously been studied for
FLPs.

2.4 Operators for Genetic Algorithms
Crossover and mutation are two kinds of operator applied to generate new solutions for genetic
algorithms (GAs). Their main role is exploration/exploitation of the search space. In each generation,
they are applied to find new solutions and identify better nearby solutions [44]. Scholars have
suggested several crossover and mutation operators, depending on the application [1, 40, 51, 52,
71, 85]. In most cases, these operators are heuristics and their performance is restricted to specific
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applications. For example, Albayrak and Allahverdi [1] developed a mutation operator that they
named “Greedy Sub Tour Mutation” (GSTM) for the traveling salesman problem. Relative to simple
GA operators, their GSTM yields error-value reductions between 59.42% and 79.51%. Swarup and
Yamashiro [85] discussed the unit commitment problem and proposed specific operators to deal
with its time-dependency constraints. In practical use, such modification steps are required if one
is to improve the efficiency of GA operators in generating better solutions [39].

In response to general GA operators’ inefficiency in relation to the overlap constraint, we propose
a grid-based modification to them. To deal with this issue, our approach forms grid lines at the
beginning and end of the parent’s elements. The grid lines are used for finding the empty slots on
the canvas, and the operator then moves/adjusts the position/size of the swapped genes to occupy
one of these slots. Hence, our grid-based operators satisfy the constraint of non-overlap. Subsection
4.2 provides detail-level discussion of the steps followed.

2.5 Summary of Connections with Prior Work
Our work breaks new ground in three respects. Firstly, it extends research on layout problems from
facility layouts to graphical layouts, a domain distinguished by the number and nonlinearity of the
objective functions, its coloring decisions, and the grid structure. Secondly, ours appears to be the
first attempt at a formal definition of the many-objective graphical layout problem. Finally, the
novel grid operators we propose permit more efficient solutions from genetic algorithms.

3 PROBLEM DEFINITION AND OBJECTIVE FUNCTIONS
This section provides a mathematical definition 1) of the decision problem and 2) of sufficient
objectives for computational generation of full graphical layouts. The per-objective results in Figure
1 show that optimizing for a single objective function does not yield a high-quality layout. Finding
a desirable tradeoff among the various objectives is an essential aspect of design. Therefore, we
cast the task as a many-objective optimization problem. Further on, we present a GA-based method
for approximating the Pareto front, in Section 4.

Verbal description of the decision variables lays the ground for their mathematical formulation.
The problem comprises three sets of decision variables, for the position, size, and color of each
element. Position articulates the beginning location of the rectangular elements on the canvas,
with 𝑥𝑖 and 𝑦𝑖 representing the starting distance of element 𝑖 from the given 𝑥-coordinate and
𝑦-coordinate, respectively. Size refers to the width and height of each element, honoring its specific
size limitations. Its decision variables for element 𝑖 are𝑤𝑖 and 𝑙𝑖 . Finally, three decision variables
are used to find a color for each graphical element. This is considered in the 𝑅𝐺𝐵 color space, with
decision variables of 𝑅𝑖 for element 𝑖’s red channel,𝐺𝑖 for green, and 𝐵𝑖 for blue. Let us take a given
set of rectangular graphical elements 𝑁 and a task of placing each element 𝑖 ∈ 𝑁 on a fixed 2D
canvas such that there is no overlap among elements, overflow, or empty space.
Using these decision variables, we can formulate our objective functions. A multi-objective

optimization problem can be formulated generally as

min 𝑭 (𝒙) = (𝑓1 (𝒙), · · · , 𝑓𝑀 (𝒙))
s.t. 𝒙 ∈ Ω,

(1)

where𝑀 is the number of objectives, 𝑥 is the feasible set of decision variables, and Ω is the set of
all boundaries and constraints.
The eight objectives considered here cover fundamental aspects of visual attention (saliency),

perceptual fluency (grid lines and clutter), motor control (selection time), and visual appeal (color
harmony). Obviously, these objectives, discussed in the literature [72], are not the only ones possible;
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we used them to test the efficiency of grid-based operators and demonstrate that they yield a high-
quality layout without additional human input. Therefore, the designer can consider this approach
to be a plug-and-play framework – new objectives can be added and old ones removed as the case
dictates. Also, our approach is compatible with various screen resolutions.

Below, we will use a running example to illustrate the objectives. The example Web page has a
canvas size of 800 × 600 and rectangular elements with dimensions of 50 to 600 pixels (see Table 9
in the appendix).

3.1 Grid Lines and Alignment
The term “grid quality” refers to the internal alignment of elements with each other. Several studies
have discussed this metric [27, 33, 43]. Our method uses the start and the end position of each
element to find the number of grid lines, so the sum of unique horizontal and vertical lines gives
the total number of alignment lines. This objective can be formulated as

min
∑
𝑖

𝑈 (𝑣𝑖 ) +𝑈 (ℎ𝑖 ), (2)

where vertex locations 𝑣𝑖 and ℎ𝑖 indicate the positions of the vertical and horizontal lines associated
with element 𝑖 , respectively. Note that each element has two vertical line positions and two
horizontal line positions, and their positions could overlap with the beginning or end of other
elements. Then, the function 𝑈 returns the number of unique values for each vector. For this
objective, the total number of these unique lines must be minimized.
The optimal result for this objective, given the element-size limitations shown in Table 9, is

displayed in Figure 1a. This pane shows three vertical lines and four horizontal lines, which makes
the value for this objective 7, with all elements perfectly aligned and within the set size limits.

3.2 Selection Time
The objective denoted as “selection time” describes the pairwise relationship between elements.
The main aim is to reduce the time for moving the cursor point from the current element to the
target one. Thus, the user finds related elements more easily. Hence, the transition time is calculated
via Fitts’ law [64], according to which the time for moving between two elements’ center points
can be computed via the formulation

𝑇 = 𝑎 + 𝑏 log2
(
𝐷

𝑊
+ 1

)
, (3)

where 𝑇 is the transition time,𝑊 is the width of the target element, and 𝐷 is the distance between
the center of the current and the target element. In addition, 𝑎 and 𝑏 are empirical parameters
connected with the input device. Other given data come from a pairwise matrix for the frequency of
moving between elements 𝑖 and 𝑗 , or 𝑓𝑖 𝑗 . There are three possible sources for the pairwise frequency
matrix: 1) expert (designer) opinion, 2) theory, 3) data. Accordingly, this objective is calculated thus:

min
∑
𝑖

∑
𝑗

𝑇𝑖 𝑗 𝑓𝑖 𝑗 (4)

We wish to minimize this objective. For purposes of our instance, there is assumed to be a strong
relationship between elements 1 and 5. Figure 1b shows the model’s result for this, in which the
elements are in their minimum size ratios for purposes of decreasing the distance between them.
This is in line with the goal of minimizing selection time.
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3.3 Visual Clutter
“Visual clutter” refers to how confusing a display is. Intuition indicates that the more cluttered a
display, the more difficult it is to place a new element there that would catch a user’s attention [82].
Therefore, this value should be minimized. Good use of element size and color can be regarded as
two important means of reducing it. We use a Euclidean metric (distance) for the relevant functions’
calculations.

3.3.1 Size clutter. We apply the following formulation for minimizing visual clutter in terms of
size:

min
∑
𝑖

∑
𝑗

Δ𝐸𝑤
𝑖 𝑗 + Δ𝐸𝑙𝑖 𝑗 (5)

Δ𝐸𝑤
𝑖 𝑗
and Δ𝐸𝑙𝑖 𝑗 are the Euclidean width and height calculation, respectively, for elements 𝑖 and 𝑗 .

Since this function is designed to minimize differences in the element sizes, we would expect to see
similarly sized elements in the optimal layout, as indeed seen in Figure 1c (it should be noted also
that element positions are not important with respect to this objective).

3.3.2 Color clutter. For matching RGB values to human perception, some modification to the color
channel weights is necessary, to make it smooth [13]. This gives us

𝑟𝑖 𝑗 =
𝐶𝑖,𝑅 +𝐶 𝑗,𝑅

2

Δ𝐶𝑖 𝑗 =

√
(2 +

𝑟𝑖 𝑗

256
) ∗ Δ𝑅2

𝑖 𝑗
+ 4 ∗ Δ𝐺2

𝑖 𝑗
+ (2 +

255 − 𝑟𝑖 𝑗

256
) ∗ Δ𝐵2

𝑖 𝑗
,

(6)

where 𝐶𝑖,𝑅 and 𝐶 𝑗,𝑅 are the red-channel values for element 𝑖 and element 𝑗 , and their average is 𝑟𝑖 𝑗 .
The between-element differences for the red, green, and blue channel are calculated as Δ𝑅𝑖 𝑗 , Δ𝐺𝑖 𝑗 ,
and Δ𝐵𝑖 𝑗 , respectively. Finally, Δ𝐶𝑖 𝑗 is obtained as the color distance between 𝑖 and 𝑗 . Therefore,
visual clutter for colors can be obtained as

min
∑
𝑖

∑
𝑗

Δ𝐶𝑖 𝑗 . (7)

This functionminimizes the difference for all colors. The result of applying this objective is displayed
in Figure 1d; the elements have the same color in the optimal condition. When there are some
image or video elements, these elements should not be included in the calculations due to their
variety of colors. Note that the elements’ position and size are not important with regard to the
function for color-related visual clutter.

3.4 Visual Saliency
Saliency is defined as the visual conspicuity of areas in the interface [46]. Salient areas are those
more likely to catch the attention of the user. Considering this measurement is useful for making
the key elements more striking.
As in the case of visual clutter, we use the Euclidean metric. However, there are two further

considerations for these calculations: 1) the relative visual saliency between each salient element
and non-salient elements and 2) the saliency relation between all salient elements. It is clear that
the value obtained should be maximized if the salient elements are to be readily distinguished. We
use 𝑠 for the salient elements and 𝑛 for non-salient elements, and𝑤 is the weight for importance.
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3.4.1 Element size for saliency. We use the following formula for connecting visual saliency with
size:

𝑤
∑
𝑠

∑
𝑗 ∈𝑛

(
Δ𝐸𝑤

𝑠 𝑗 + Δ𝐸𝑙𝑠 𝑗

)
+ (1 −𝑤)

∑
𝑠

∑
𝑗 ∈𝑠

(
Δ𝐸𝑤

𝑠 𝑗 + Δ𝐸𝑙𝑠 𝑗

)
(8)

To draw the user’s attention to the important elements, the value for this objective function
should be maximized. The result for this objective is shown in Figure 1e. For our instance, we
defined element 3 as a salient element, and that element indeed differs in size from all other elements
in this pane. Obviously, conflicts will arise between this function and other objectives, including
those related to alignment, selection time, and visual clutter.

3.4.2 Element color for saliency. In a parallel with the section above, we consider visual saliency as
represented by color, both that shared by all salient elements and color differences between salient
and non-salient elements. For visual saliency indicated by color, we have

𝑤
∑
𝑠

∑
𝑗 ∈𝑛

Δ𝐶𝑠 𝑗 + (1 −𝑤)
∑
𝑠

∑
𝑗 ∈𝑠

Δ𝐶𝑠 𝑗 . (9)

The result for connecting colors with visual saliency is displayed in Figure 1f. A unique color is
used to denote element 3 as salient, rendering this element easily detectable. Since only colors are
important under this objective, the elements may vary in size within the ranges specified for them.

3.5 Color Harmony
Color harmony is defined as combining colors in a manner that is aesthetically pleasing for
human visual perception: selecting colors with positions in the color space that display harmonic
relationships. Though there is no definitive way to calculate this, Cohen-Or et al. [17] introduced
one way of automatically identifying harmonic colors. They presented eight distinct harmonic
templates, which refer to particular sectors of the hue wheel. When all colors in the set are within
the wedges indicated, the combination of colors is harmonious. The colors’ distance from these
sectors measures how far one is from a harmonic color template, so the aim is to reduce this distance
as much as possible. Distance 𝐷 (.) from each template 𝑇 can be formulated as

min𝐷 (𝑇 ) =
∑
𝑐

𝐷𝐻 (𝑐,𝑇 )𝑆 (𝑐), (10)

where the arc-length distance from color 𝑐 to a hue sector in template𝑇 is denoted as 𝐷𝐻 (𝑐,𝑇 ) and
the saturation value for 𝑐 is 𝑆 (𝑐). If all the colors fall within the wedges identified in the template,
this value will be 0. The result produced for our instance, presented in Figure 1g, demonstrates
harmony under a “Y type”[17] template.

3.6 Element Grouping
Visually grouping elements aids in understanding larger structures within a scene [55]. In psychol-
ogy, Gestalt theory asserts that the whole of anything is more important than its parts, and Gestalt
laws set forth principles of grouping accordingly [38]. According to Rock and Palmer [81], there
are eight Gestalt laws, including similarity, closure, symmetry, and continuity. Here we use the law
of proximity for calculating the visual perception of grouping. According to this law, elements that
are clustered near each other are perceived as a unified object. Therefore, we have the following
mathematical objective:

min
∑
𝑔

𝐶𝑔

𝐴𝑔

(11)
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Here, 𝑔 is the group index, 𝐴𝑔 is the summation area of all elements in group 𝑔, and 𝐶𝑔 is the
convex hull of all elements in that group. The value produced in this function for each group is
greater than or equal to 1. We can subtract the total number of groups from function 11 to obtain a
value of 0 for the optimal solution; however, it is a constant parameter, so we exclude it from that
function. Hence, the minimum value is found when there is no gap area among the elements of
each group. For our instance, we defined element 2 and element 4 to be in the same group and the
other elements to be in a separate group. As Figure 1h shows, the result grouped the elements in
accordance with visual perception theory. However, for example, the alignment and selection-time
objectives are not fully satisfied.

4 OVERVIEW OF APPROACH
We propose grid-based operators for NSGA-III [25], which is an improved version of NSGA-II [26]
that takes GAs [41] further and suits many-objective optimization problems. Deb and Jain [25]
suggested changing the selection step in NSGA-II for three main reasons: to 1) address the existence
of multiple optimal solutions, 2) increase the number of non-dominated solutions, and 3) tackle the
difficulty of approximating the Pareto front. They proposed using reference points in NSGA-III.

In overview, NSGA-III comprises five main steps. The first three are chromosome representation,
the initial population, and GA operators. The next is non-dominated sorting, based on defining
several layers of approximate Pareto solutions. Finally, the replacement step is used to select the
best solutions in the final layers to be the next generation. Crowding distance was introduced
in NSGA-II, but this strategy does not assist with many-objective problems, since it brings more
non-dominated solutions, difficulty in approximating the Pareto front, and high computational cost
[5].
In the suggested strategy of using a reference-point selection mechanism for NSGA-III, the

algorithm spreads several reference points uniformly over a hyper-plane, then evaluates new
solutions’ closeness to these reference points and selects the nearest ones. This strategy is intended
to distribute the solutions in the feasible space. Figure 2 presents a flowchart of this algorithm.

Since the model presented in this paper entails some constraints, a constraint-handling strategy
is necessary. Our constraint-handling is based on a method described by Jain and Deb [47] wherein
the main idea is to compare penalty values between solutions: the one with the smaller penalty
prevails over the other solution. In cases wherein neither brings a penalty, a non-dominate sorting
step is applied. With our constraints, penalties arise from any of three violations: 1) at least part of
one element is outside the canvas (violating the boundary constraint can be rectified simply by
defining the ultimate possible start positions of the elements on the canvas – the relevant canvas
dimension minus the minimum width and height of each element); 2) elements overlap, which the
proposed grid-based operators do not permit; or 3) there is empty space between elements. The
last is the only violation that the penalty approach described must handle.
As discussed in Section 1 and 2, NSGA-III has been studied successfully for a wide range of

applications. We empower it with greater efficiency in two ways, one of which is related to the
initial generation while the other involves modifying GA operators to satisfy the overlap constraint.
These improvement strategies are explained in detail in the subsections that follow.

4.1 The Initial Generation
The first step in defining the problem in GA terms is to choose an appropriate chromosome encoding.
This mapping represents the search space for the problem. We use the seven decision variables
discussed above, and we consider a block of genes with seven rows and 𝑛 columns, for which 𝑛

is the total number of elements. The values in the first two rows, which are 𝑋 and 𝑌 positions,
are integers between 0 and the width/height of the canvas minus the minimum width/height of
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t = t + 1

Start

Calculation of reference points

Initial generation

Tournament selection

Grid crossover and mutation

Construction of 
offspring population

NSGA steps (normalization, non-
dominated sorting, association

and niche strategy)

Next generation

Yes

Final solutions

No

End

Stopping criteria met?

Fig. 2. NSGA-III flowchart covering the initial generation and grid-based operators.

each element, respectively. The next two rows, for element widths and heights, indicate the sizes
permitted for each element. Finally, the last three rows are used for color selection in the 𝑅𝐺𝐵
space, with the value in each channel being between 0 and 255, inclusive. Figure 3 offers an example
of chromosome representation for five elements.

250 50 350 90 500

250 450 90 70 320

400 250 150 150 250

50 100 150 300 80
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Fig. 3. A sample of chromosome representation for five elements.

After encoding of the problem, the next step is to generate several chromosomes, referred to as
the initial population. This population has an impact on the performance of the algorithm [77].
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One strategy for generating this population is to rely entirely on random solutions and let the
algorithm find its way to better solutions. The other strategy, which we employed, is to generate
various, divergent solutions associated with the problem. Several studies [32, 77, 84] have found
the second strategy to exhibit better performance.

To obtain a better sense of the inefficiency of generating random initial solutions, we repeatedly
generated 200 random initial solutions, performing this procedure 10 times for three distinct data
instances (the values of the parameters for these instances are given in the appendix’s Table 10). We
calculated the percentages of solutions not violating the overlap constraint, and Table 1 presents
the averages for these.

Table 1. Random initial solutions satisfying the overlap constraint

Number of elements Average percentage of solutions
satisfying the overlap constraint

7 12.3
10 8.6
13 2.9

The averages shown in Table 1 attest that using a random initial generation is not an efficient
approach to handling the constraint of non-overlap. For example, only 2.9 percent of the random
initial generated solutions are able to meet the overlap constraint. In addition, the main reason why
this percentage is higher for the seven elements is only due to the canvas size. Actually, the size of
the canvas is considered to be identical across all the data instances, satisfying this constraint with
fewer elements is more likely. It should be noted that all solutions satisfy the boundary constraint.

Accordingly, we suggest a new strategy for generating initial solutions that satisfies the overlap
constraint. The first step is to generate several random solutions, where only the elements’ start
position is identified. All these solutions are generated to fulfil the problem’s boundary limitations
by definition. Then, the following linear formulation determines the width and height of the
elements:

min
∑

𝑖 𝑤𝑖 + ℎ𝑖 and max
∑

𝑖
𝑤𝑖 + ℎ𝑖 (12)

s.t. x𝑖 + 𝑤𝑖

2 ≤ W ∀𝑖 (13)

y𝑖 + ℎ𝑖
2 ≤ H ∀𝑖 (14)

𝑤𝑖+𝑤𝑗

2 −
��x𝑖 − x𝑗

�� ≤ M𝑙𝑖 𝑗 ∀𝑖, 𝑗 (15)
ℎ𝑖+ℎ 𝑗

2 −
��y𝑖 − y 𝑗

�� ≤ M𝑘𝑖 𝑗 ∀𝑖, 𝑗 (16)
𝑙𝑖 𝑗 + 𝑘𝑖 𝑗 ≤ 1 ∀𝑖, 𝑗 (17)
w𝑙
𝑖 ≤ 𝑤𝑖 ≤ w𝑢

𝑖 ∀𝑖 (18)
h𝑙𝑖 ≤ ℎ𝑖 ≤ h𝑢𝑖 ∀𝑖 (19)

𝑙𝑖 𝑗 , 𝑘𝑖 𝑗 ∈ {0, 1} ∀𝑖, 𝑗 (20)

Here,𝑤𝑖 and ℎ𝑖 are the width and the height decision variable, respectively, for element 𝑖 . Binary
variables 𝑙𝑖 𝑗 and 𝑘𝑖 𝑗 determine whether elements 𝑖 and 𝑗 overlap in their 𝑥- and 𝑦-coordinates,
respectively. The parameters x𝑖 and y𝑖 refer to the center point of element 𝑖 , obtained via random
generation. The values w𝑙

𝑖 and w𝑢
𝑖 denote the minimum and maximum width for element 𝑖 , and

corresponding limitations apply for the height of element 𝑖: h𝑙𝑖 and h
𝑢
𝑖 . Finally,W and H refer to the
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width and height of the canvas, respectively, and M is a sufficiently large constant, which should
be bigger than the canvas size in our case.
We solve the above model for two cases. In the first case, function 12 minimizes the elements’

width and height (see line 10 of Algorithm 1), and the second case involves maximizing the sizes of
the elements (see line 16 of Algorithm 1). These cases are used to generate solutions with various
element sizes, and the constraints guarantee fulfilling the canvas’s limitations and the condition
of non-overlap (see lines 11-15 and lines 17-21 of Algorithm 1). Specifically, constraints 13 and 14
guarantee that all elements are entirely on the canvas, constraints 15–17 do not allow overlapping,
and constraints 18 and 19 make sure the width and height of element 𝑖 are within the set range.
None of the solutions for these two linear models violates our overlap or canvas-border con-

straints. We repeat all these steps, for different randomly generated starting positions, until all the
solutions required for the initial population are obtained. The pseudocode for these steps is shown
as Algorithm 1. Obviously, changing the gap value returns solutions with different element sizes
(see line 4 of Algorithm 1).

Algorithm 1 Initial-generation steps
1: Input: number of initial solutions and gap value
2: 𝑁 = number of elements
3: 𝐹 = number of initial solutions
4: 𝐺 = the gap set for the model (conditions 12–20)
5: 𝑆 = list of solutions
6: 𝑛 = 0
7: while 𝑛 < 𝐹 do
8: x𝑖 and y𝑖 = randomly generate the starting position of the elements, ∀𝑖 ∈ 𝑁

9: Insert the x𝑖 and y𝑖 values for constraints 13–16
10: 𝑀1 = solve the model (conditions 12–20) with minimum objective function and gap 𝐺
11: if 𝑀1 feasible then
12: Return values𝑤𝑖 and ℎ𝑖 for all elements
13: Add𝑤𝑖 , ℎ𝑖 , x𝑖 , and y𝑖 as a solution to 𝑆
14: 𝑛 = 𝑛 + 1
15: end if
16: 𝑀2 = solve the model (conditions 12–20) with maximum objective function and gap 𝐺
17: if 𝑀2 feasible then
18: Return values𝑤𝑖 and ℎ𝑖 for all elements
19: Add𝑤𝑖 , ℎ𝑖 , x𝑖 , and y𝑖 as a solution to 𝑆
20: 𝑛 = 𝑛 + 1
21: end if
22: end while
23: Output: list of all solutions, 𝑆

4.2 The Grid-Based Operators
The two main operators in GAs are crossover and mutation. These operators are used to generate
offspring. Their primary roles are to explore and exploit the search space. Therefore, genetic
operations should be designed carefully to investigate the search space properly. We developed our
grid-based operators accordingly to satisfy the overlap constraint. These operators, discussed in
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detail in the two subsections below, can be used for any problem with overlap-related constraints,
such as bin-packing [16] and UA-FLPs.

4.2.1 The grid approach to crossover operators. The primary role of crossover is to exploit the
search space between two chromosomes (called parents) so as to generate a new chromosome (the
offspring or child). The offspring inherits a portion of its genetic makeup from one parent and
the rest from the other parent. While the original form of uniform crossover is used in our case,
one should remember that applying this crossover in its original form leads to several infeasible
solutions. For example, Figure 4 shows a result from its use for five elements (the corresponding
data are found in Table 9). Note that Figure 4 shows the result only of considering size limitations;
the element colors are chosen purely to clarify the propagation result with the crossover operator,
since the color decisions do not violate any constraint and their evaluation is not necessary for this
particular example.

Uniform crossover

Parent 2 Offspring 2

Parent 1 Offspring 1

Fig. 4. An instance with the original uniform-crossover operator that violates the overlap constraint.

In Figure 4, there are two parents, each with five elements, and uniform crossover appears for
element 2 and element 5. Both offspring exemplify original uniform crossover’s violation of the
overlap constraint: Two overlaps render offspring 1’s solution infeasible, that between elements
1 and 5 and that between elements 2 and 4. Offspring 2, in turn, is infeasible because element 5
overlaps with elements 1 and 3 both and there is overlap between elements 2 and 3.

For concrete evidence, we evaluated the performance of the original uniform-crossover operator
for three distinct instances. The results are summarized in Table 2. The algorithm was executed
five times, with all parameters taken from Table 10.

Table 2 presents the average percentage of the solutions that satisfied the overlap constraint, for
three distinct instances. As the table shows, these figures are quite small. The highest percentage,
which is 11.3%, was seen after 100 generations for the seven-element instance. For all instances,
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Table 2. The average percentage of overlap-constraint-satisfying solutions among the solutions generated via
the original uniform-crossover operator (all solutions generated via the grid-based crossover operator satisfy
this constraint)

Average percentage of solutions satisfying the overlap constraint

Number of elements 1st generation 10th generation 50th generation 100th generation

7 8.1 8.9 9.6 11.3
10 5.1 5.5 6.4 7.7
13 2.2 2.4 3.1 3.8

the percentage increases with the number of generations. This is because the next generations are
generated through better parents, in line with the main principle of GAs. All these small percentages
attest to the inefficiency of using the original uniform-crossover operator.
A better strategy might be to generate only feasible solutions or modify the infeasible ones to

satisfy the constraint of no overlapping. The crossover strategy we propose follows the grid design.
Figure 5 shows how this can process a solution to meet the overlap constraint. It should be noted
that the crossover points in this example, used also for Figure 4, are at elements 2 and 5. As the
latter figure shows, these two offspring violate the overlap constraint. However, building grid lines
with the parts of the parents’ genes (see “Grid-based 1” and “Grid-based 2” in Figure 5) produces
some feasible empty spaces. Elements 2 and 5 can be assigned randomly to these spaces as their
size limitations permit.

Grid-based 2

Offspring 1

Offspring 2Parent 2

Parent 1 Grid-based 1

Fig. 5. Use of a grid-based crossover operator.

Algorithm 2 presents all these steps in detail. In general, after selecting two parents (shown
in line 1 of Algorithm 2), a uniform-crossover operator randomly selects the crossover elements
(shown in line 2 of Algorithm 2). In this stage, we begin by creating the grid lines for the remaining
part of the parent’s gene (shown in lines 6 and 17 of Algorithm 2). Then, if a gene of the other
parent at the crossover point can lie within this set of lines, the algorithm accepts it (shown in lines
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7-9 and lines 18-20 of Algorithm 2). Otherwise, it randomly moves the element to one of the empty
spaces in the grid (shown in lines 10 and 21 of Algorithm 2). This process continues until all the
crossover elements are placed.

Algorithm 2 Grid-based crossover steps
1: Input: two parents, 𝑃1 and 𝑃2
2: 𝑉= a uniform random binary set to determine the crossover elements
3: 𝐿1, 𝐿2 = an index of elements in 𝑉 for which the value is 0
4: for element 𝑖 in set 𝑉 do
5: if the value of the 𝑖th element in set 𝑉 is 1 then
6: 𝐺1 = build grid lines with 𝐿1
7: if crossover at element 𝑖 makes 𝐺1 infeasible then
8: 𝑡𝑒𝑚𝑝1 = a set of possible slots within the grid lines 𝐺1 (which are fitted to the size
9: of element 𝑖 from parent 𝑃2 or within the size range for element 𝑖)
10: randomly select one of the slots from 𝑡𝑒𝑚𝑝1 and move/adjust element 𝑖 for this slot
11: end if
12: add element 𝑖 to list 𝐿1
13: end if
14: end for
15: for element 𝑖 in set 𝑉 do
16: if the value of the 𝑖th element in set 𝑉 is 1 then
17: 𝐺2 = build grid lines with 𝐿2
18: if crossover at element 𝑖 makes 𝐺2 infeasible then
19: 𝑡𝑒𝑚𝑝2 = a set of possible slots within the grid lines 𝐺2 (which are fitted to the size
20: of element 𝑖 from parent 𝑃1 or within the size range for element 𝑖)
21: randomly select one of the slots from 𝑡𝑒𝑚𝑝2 and move/adjust element 𝑖 for this slot
22: end if
23: add element 𝑖 to list 𝐿2
24: end if
25: end for
26: Output: two generated solutions

4.2.2 The grid-based operator for mutation. Mutation functions by exploring the space via a minor
change in the chromosome. It randomly jumps to a different part of the search space (refer to line
2 of Algorithm 3), hence keeping the algorithm from getting “stuck” at local optima. Randomly
changing the size and position of some elements generates infeasible solutions for the most part.
Accordingly, we use the same method based on grid lines and change the position, the size, or both
to satisfy the overlap constraint (refer to lines 6-12 of Algorithm 3). Algorithm 3 covers all of the
steps proposed.

5 IMPLEMENTATION AND COMPUTATIONAL PERFORMANCE
To evaluate the efficiency of our model and algorithm, we implemented it in Python 3.6 and ran it
on a computer with a 1.7 GHz CPU, a Core i5 processor, and 8 GB of RAM. In addition, we used the
GurobiTM solver to find solutions for the mathematical model (defined by conditions 12 to 20) and
used the DEAP [31] Python package to code the algorithm.

The following hyperparameters affect the performance of this algorithm: 1) Population size: this
parameter has a main role in the computational time because in each generation all the steps of
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Algorithm 3 Grid-based mutation steps
1: Input: a parent, 𝑃
2: 𝑅 = a random binary set for determining the mutation elements
3: 𝐿 = an index of elements in 𝑅 for which the value is 0
4: for element 𝑖 in set 𝑅 do
5: if the value of the 𝑖th element in set 𝐿 is 1 then
6: 𝐺 = build grid lines with 𝐿

7: if mutation at element 𝑖 makes 𝐺 infeasible then
8: 𝑡𝑒𝑚𝑝 = a set of possible slots within the grid lines 𝐺 (which are fitted to the size of
9: element 𝑖 from parent 𝑃 or within the size range for element 𝑖)
10: randomly select one of the slots from 𝑡𝑒𝑚𝑝 and move/adjust element 𝑖 for this slot
11: end if
12: add element 𝑖 to list 𝐿
13: end if
14: end for
15: Output: generated solution

loop in Figure 2 should be calculated. In most studies, this number is between 50 and 200 [26, 39],
and we considered 200 for it because our problem has 8 different objectives and a higher number for
the population size could improve the diversity of final Pareto solution. 2) Number of generations: it
refers to the number of cycles in which the algorithm is executed to reach the state of convergence.
We run the algorithm 10 times and the solutions did not improve after around 450 generations.
Therefore, we selected 500 generations as a condition to terminate the algorithm.

5.1 Performance Comparison
In this section, we consider the performance of the proposed algorithm relative to generic NSGA-III.
We evaluated four cases: 1) random initial solutions and general operators (RI), 2) non-overlap
initial solutions and general operators (NI), 3) random initial solutions and grid-based operators
(RI-G), and 4) non-overlap initial solutions and grid-based operators (NI-G). Case 4 represents our
algorithm.

To test performance in all cases, we considered three data instances. The values of the parameters
for these instances are given in the appendix’s Table 10. Various element sizes were tested, for
more thorough comparison. For all the cases, we assumed a population size of 200 and set the
number of generations to 500. The algorithm was run five times. Average computation times are
reported in Table 3. For all cases, those for NI were a bit higher than those for RI, and NI-G’s were
slightly higher than RI-G’s, on account of the algorithm taking more time to generate feasible
initial solutions through solving of the model proposed in Subsection 4.1. In addition, the higher
computation times reported for RI-G and NI-G stem mainly from the modification steps required
with the grid-based operators. Tables 5 and 6 illustrate that the greater time use is more than offset
by the performance benefits with the proposed algorithm.

Using the eight color-harmony templates and finding each element’s distance from the various
sectors of the hue wheel causes the color-harmony calculations to take too long. This significantly
increases total calculation time. The effect is reported in Table 4, which shows that the mean value
for all tests decreases around 50% when this measurement is omitted – a noticeable difference.
Hence, using surrogate-based methods [14] to approximating the relevant value could significantly
reduce total computation time.
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Table 3. Computation time, in hours, for random initial solutions with general operators (RI), non-overlap
initial solutions with general operators (NI), random initial solutions with grid-based operators (RI-G), and
non-overlap initial solutions with grid-based operators (NI-G)

Number of elements Statistical values Computational time (h)

RI NI RI-G NI-G

7 Mean 3.2 3.4 4.1 4.2
SD 0.221 0.142 0.137 0.245

10 Mean 5.4 5.9 7.1 7.6
SD 0.209 0.291 0.301 0.386

13 Mean 10.3 10.8 12.2 12.9
SD 0.512 0.451 0.815 0.791

Table 4. Computation time, in hours, for all objectives and for all objectives without color harmony

Number of elements Statistical values Computational time (h)

All objectives Without color harmony

7 Mean 4.2 2.4
SD 0.245 0.317

10 Mean 7.6 3.2
SD 0.386 0.289

13 Mean 12.9 6.82
SD 0.791 0.495

To evaluate the performance of our algorithm, we used the two most popular metrics: inverted
generational distance (IGD) [15] and hypervolume (HV) [100]. Together, these can reveal accuracy,
or the convergence of a set [80], and diversity, referring to the set’s distribution on the Pareto front
[54]. They can be calculated, respectively, through

IGD (𝑃, 𝑆) =

(∑ |𝑃 |
𝑖=1 𝑑

𝑞

𝑖

) 1
𝑞

|𝑃 | , (21)

where 𝑑𝑞
𝑖
is the minimum distance from Pareto reference 𝑖 to Pareto solution 𝑞 – the calculation

indicates how far an approximated Pareto solution is from the reference Pareto front, so a smaller
value is better for this metric – and

HV (𝑆, 𝑅) = 𝑣𝑜𝑙𝑢𝑚𝑒

( |𝑆 |⋃
𝑖=1

𝑣𝑖

)
. (22)

For the HV metric, 𝑆 is an index for the Pareto approximation solutions and 𝑅 is a reference
point, and 𝑣𝑖 is the volume of solution 𝑖 . This metric captures the diversity and distribution of
Pareto solutions. Obviously, higher values are preferable for this metric. The results under the two
metrics are shown in tables 5 and 6 (for IGD and HV, respectively).

In Table 5, NI-G has the lowest mean values for all three cases, demonstrating the efficiency of grid-
based operators for improving the solutions’ diversity relative to the approximated Pareto solutions.
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Table 5. Statistics for the IGD values for various sizes – random initial solutions with general operators (RI),
non-overlap initial solutions with general operators (NI), random initial solutions with grid-based operators
(RI-G), and on-overlap initial solutions with grid-based operators (NI-G)

Number of elements Statistical values IGD value

RI NI RI-G NI-G

7 Mean 0.643 0.586 0.132 0.073
SD 0.026 0.134 0.018 0.107

10 Mean 0.731 0.504 0.187 0.121
SD 0.242 0.073 0.119 0.094

13 Mean 0.908 0.872 0.265 0.152
SD 0.143 0.159 0.153 0.074

Moreover, that the mean values for NI are smaller than those for RI shows the improvement in
solution quality that arises from generating overlap-free initial solutions. Overall, the proposed
non-overlap initial method with application of grid-based operators displays better performance in
comparison to random initial solutions and general operators, under the IGD metric.

The results for the HV metric are tabulated in Table 6, where NI-G has the highest mean values
across all three cases. As with IGD, the mean values reported for NI are higher than those for RI,
which demonstrates the effectiveness of generating non-overlap initial solutions. Since the HV
metric calculates the volume for a set of solutions, we can conclude that our method performs
better in that it covers more space. This points to improved diversity of solutions relative to the
approximated Pareto solutions.

Table 6. Statistics for the HV values for various sizes – random initial solutions with general operators (RI),
non-overlap initial solutions with general operators (NI), random initial solutions with grid-based operators
(RI-G), and non-overlap initial solutions with grid-based operators (NI-G)

Number of elements Statistical values HV value

RI NI RI-G NI-G

7 Mean 3.425 4.231 7.953 8.497
SD 0.351 0.159 0.353 0.274

10 Mean 5.754 6.357 10.756 11.346
SD 0.659 0.344 0.767 0.527

13 Mean 8.976 10.642 14.907 15.549
SD 1.354 0.858 0.564 0.635

Another, more systematic way to measure the strength of the relation between two random
search -based algorithms is to calculate their effect size [3, 49]. The effect sizes for 7, 10, 13 elements
between NI-G and RI are 0.76, 0.61 and 0.94, respectively. According to the suggested guidelines
[49, 90], the difference level between the result is ’large’, which shows the efficacy of the algorithm
proposed in this paper.

5.2 Example Application
To illustrate our approach concretely, we examine three cases. Two of them are for a 800 × 1260
desktop screen, and the other is for a mobile application with 375 × 667 screen size. Their data
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are shown in the appendix’s Table 11, 12, and 13. As already mentioned, the effect of image and
video elements should not be included in the color performance metrics, except when there is a
logo or a solid color for these elements. Firstly, the results for a run of generic NSGA-III for 10
elements after 500 generations are presented in Figure 6. As discussed in previous sections, applying
this algorithm with general operators and a random initial generation cannot yield promising
solutions. As explained in Subsection 2.3, the number of objectives led to nearly all the solutions
generated being non-dominated ones after 10 generations. Hence, after execution of the algorithm,
the number of solutions on the approximated Pareto front is equal to the population size. Obviously,
the approximated Pareto solutions are not represented well. Figure 6 illustrates that the elements
are not well-aligned and there are large empty spaces present. Hence, this technique does not seem
appropriate for a final layout. However, the algorithm can find good color harmony among elements,
and the elements’ clustering by salience group attests to the algorithm’s utility for addressing the
grouping objective function.

(a) (b)

Fig. 6. A layout of solutions for NSGA-III via the original uniform operator and random initial generation for
a 10-element task.

Next, we ran our proposed algorithm for 500 generations with a population size of 200. A sample
of eight layouts on the approximated Pareto front is shown in Figure 7. All these layouts are
well-aligned, and there are no gaps between elements. Furthermore, there are 200 solutions on the
approximated Pareto front, from among which the designer can choose on the basis of his or her
preferences.

Fig. 7. A gallery of layouts representing the approximated Pareto-optimal solutions for 10 elements.

Figure 8 shows all the solutions, with their normalized objective values. Such parallel-coordinate
plots are useful for summarizing all solution values in a single visualization, and a designer can use
this tool to aid in identifying a preferred layout. For example, the image displays three solutions in
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the approximated Pareto set in red, blue, and green, showing that these solutions do not dominate
each other and that decreasing the value for one objective causes the values for the others to
decrease or increase. The solution in red stands out from the blue and green ones. With such a
figure, the designer can easily specify which combination of priorities is desired in the final layout.

Fig. 8. A parallel-coordinate plot for all solutions on the Pareto front for 10 elements. As a sample, three
randomly selected solutions are represented with green, red, and blue lines.

Figure 9 presents a sample of eight layouts for 13 elements on the final approximated Pareto
front. Just as with the 10-element case, there are clear tradeoffs among objectives for the input
design task. For example, some layouts use similar colors for some elements; the value for the color-
clutter-related objective is lower for those layouts. Variety in shapes is evident too. The layouts in
the rightmost column have six vertical and four horizontal alignment lines, while the others have
five vertical and five horizontal alignment lines. Accordingly, the layouts stretch differently.

Input	design	task Outputs

Fig. 9. A gallery of layouts for the approximated Pareto-optimal solutions for 13 elements.
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The final example, for the mobile application, involves 10 elements: a header, a list, two images,
two text elements, and four buttons. Eight of the final solutions are shown in Figure 10 for illustration
purposes. In all shown solutions, "list element" is placed on the left or right side of the canvas. The
salient element, which in our example is a "header", distinguished with a different color and size
from other elements.

Fig. 10. A gallery of layouts for the approximated Pareto-optimal solutions for the mobile-application instance.

5.3 Perceived quality by users
We evaluated the efficiency of the generated layouts in a case study. To validate our approach, the
perceived quality of layouts was assessed by users. Details and results of the study are explained as
follows.

Method
Participants: We used Prolific1 to recruit online users. This is an online research platform to find
participants with different backgrounds [75]. A total of 50 participants were recruited and each
participant spent around 5 minutes completing the task. According to the Prolific recommendation,
each participant received £0.65 for the purpose of compensation. All participants were above 18
years old with normal or corrected-to-normal vision. Four of the participants did not complete the
study, so the data of 46 were collected in the final analysis. Their age ranged from 18 to 58 years
old (Mean: 29.98, SD: 11.52). 20 of the participants were female.

Procedure and design: Before the study, we executed our approach for a 15-element design
task (their data are shown in the appendix’s Table 14). Then, we randomly selected 5 of the layouts
on the Pareto front solutions at three different NSGA-III generations (100, 300, and 500). For example,
the layouts of 5 random solutions at generation 500 are shown in Figure 11. We used these steps
because there is no other baseline available to consider colors or multiple objectives. During the
study, all these 15 different layouts are randomly presented and the participants were asked to

1Prolific, https://www.prolific.co/
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rate their perceived quality on a discrete scale of 0 (extremely low) to 10 (extremely high). The
participants were completely free to rate according to their own judgment and preferences, and no
other information was given to them about which design has a better/worse performance.

Fig. 11. A gallery of layouts for the approximated Pareto-optimal solutions for a 12-element instance.

Results: The summary of results for different generations are reported in Table 7. To statistically
test the effect of generations on the perceived quality, the ANOVA test was calculated. This effect
was found to be statistically significant (𝑝 < 0.0001). Since the ANOVA test only shows whether
there is a difference between the means of groups or not, another test is required to reveal which
groups are different. Therefore, post-hoc Tukey test [70] results are shown in Table 8. The difference
between all generations is significant (𝑝 < 0.001) which means that our approach generated better
layouts in its final generations.

Table 7. Mean and standard deviation from user ratings for different generations.

Generation Quality rating

Mean SD

100 1.91 1.61
300 4.58 2.01
500 6.98 1.65

6 LIMITATIONS
The control condition we used in the user study was based on the number of generations. The
results indicate that by increasing the number of generations, human-perceived quality increases,
which supports the choice of objectives in our system. However, this leaves open the question how
good the outputs are in comparison to human-designed layouts. In the future, empirical studies
should include layouts that are designed or improved by a human (e.g., [22, 67]). Also, our study
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Table 8. Tukey test result for comparing different generations

Generation number Mean diff. P-Value Reject
Case 1 Case2

100 300 2.67 0.001 True
100 500 5.07 0.001 True
300 500 2.4 0.001 True

asked users to rate the general quality of a layout. In order to complement understanding of the
components involved, future studies could include ratings that match the objectives [88].

Perhaps the main limitation of the current algorithm concerns the computation effort required.
This limits the application of this method especially within interactive tools. However, we note that
large and realistic task instances as reported here have never been solved earlier in the relevant
literature.

7 CONCLUSION
The graphical-layout problem ismarkedly different from other layout problems, most notably the oft-
studied facility layout problem. It is complicated by both the graphical elements and the objectives
associated with visual appeal and attention. Hence, previous attempts of genetic algorithms in
user-interface design were limited to keyboards and menus.
This paper marks the first demonstration that the full problem can be solved with genetic

algorithms. Given that out-of-the-box approaches to GAs suffer from a high proportion of infeasible
candidate designs, we were motivated to develop grid-based operators that make sure all candidates
are well-aligned. This improves result quality significantly. Implementing the concept in NSGA-III
allowed us to show that meaningful Pareto sets can be obtained in this manner.
We point to two avenues for future work. Firstly, although we have shown that high quality

results can be produced by these objectives, researchers could explore new objectives and their
effects on performance. For example, one might add visual balance and visual flow. Further, these
could be fit to the individual style or preference of the designer. Secondly, computational time should
be decreased, to permit interactive optimization with a human designer in the loop. Emerging
work that combines machine learning approaches, such as deep reinforcement learning, with
optimizer-generated data, are promising for this purpose, because – after training – running the
optimizer can be much faster Bengio et al. [6].
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APPENDIX

Table 9. Instance data for five elements

Element number Min. width Max. width Min. height Max. height

1 200 500 50 350
2 200 350 50 400
3 100 500 100 200
4 50 400 100 300
5 50 250 50 600

This test has 10 elements, the data for which are shown in Table 11. The elements differ in their
size limitations and belong to different groups. Elements 1 and 6 are the most important elements,
and we consider them the salient ones. The pairwise transition matrix is generated randomly.

This test has 13 elements, the data for which are listed in Table 12. There are two groups, and
elements 2 and 8 are the salient elements. As in the previous test, the pairwise transition matrix is
generated randomly.
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Table 10. Values of the parameters

Parameter Value
Canvas size 600 × 800
Min. width ∼ Uniform[50, 150]
Max. width (Min. width) ∗ 1.2
Min. height ∼ Uniform[100, 250]
Max. height (Min. height) ∗ 1.2
Transition matrix ∼ Uniform[0, 10]
Number of groups A random integer between 2 and 4

Table 11. Data for 10 elements

Row Element Min. width Max. width Min. height Max. height Group number Salient

1 Heading 500 700 50 200 1 *
2 Image 200 350 200 350 1
3 Paragraph 200 450 200 350 1
4 Button 50 200 50 200 1
5 Button 50 200 50 200 1
6 Paragraph 400 600 300 550 1 *
7 List 50 200 400 650 1
8 Image 200 350 100 300 2
9 Paragraph 200 350 100 300 2
10 Button 50 200 50 200 2

Table 12. Data for 13 elements

Row Element Min. width Max. width Min. height Max. height Group number Salient

1 Heading 100 300 50 150 1
2 Image 50 250 100 250 1 *
3 Button 50 200 100 200 1
4 Button 50 150 150 300 1
5 Button 100 300 50 200 1
6 Paragraph 100 300 100 350 1
7 List 50 300 150 400 2
8 Image 100 300 100 350 2 *
9 Paragraph 50 250 250 450 2
10 Image 50 500 100 600 2
11 List 50 250 250 450 2
12 Paragraph 50 500 100 600 2
13 Paragraph 50 500 100 600 2
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Table 13. Data for the mobile-application instance

Row Element Min. width Max. width Min. height Max. height Group number Salient

1 Heading 150 250 50 150 1 *
2 Button 50 250 50 150 1
3 List 50 150 200 500 1
4 Paragraph 200 350 250 400 1
5 Image 100 250 50 150 1
6 Image 100 250 50 150 1
7 Button 50 150 50 150 2
8 Button 50 150 50 150 2
9 Button 50 150 50 150 2
10 Paragraph 200 375 100 250 2

Table 14. Data for the user study

Row Element Min. width Max. width Min. height Max. height Group number Salient

1 Heading 200 900 100 350 1
2 Image 200 500 150 400 1
3 Paragraph 200 500 150 400 1
4 Image 200 500 150 400 1
5 Paragraph 200 500 150 400 1
6 Video 200 600 150 500 1
7 Paragraph 200 500 150 400 1
8 Hyperlink 50 300 50 250 1 *
9 Paragraph 300 1200 50 250 1
10 Search box 50 300 50 150 1
11 List 50 250 100 350 1
12 Button 50 200 50 150 2 *
13 Button 50 200 50 150 2 *
14 Button 50 150 50 150 2 *
15 Button 50 150 50 150 2 *
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