
Button Simulation and Design via FDVV Models

Yi-Chi Liao1 Sunjun Kim1,2,3 Byungjoo Lee2 Antti Oulasvirta1

1Aalto University, Finland 2 KAIST, Republic of Korea 3DGIST, Republic of Korea
yi-chi.liao@aalto.fi, sunjun.kim@aalto.fi, byungjoo.lee@kaist.ac.kr, antti.oulasvirta@aalto.fi

ABSTRACT
Designing a push-button with desired sensation and perfor-
mance is challenging because the mechanical construction
must have the right response characteristics. Physical simula-
tion of a button’s force–displacement (FD) response has been
studied to facilitate prototyping; however, the simulations’
scope and realism have been limited. In this paper, we extend
FD modeling to include vibration (V) and velocity-dependence
characteristics (V). The resulting FDVV models better capture
tactility characteristics of buttons, including snap. They in-
crease the range of simulated buttons and the perceived realism
relative to FD models. The paper also demonstrates methods
for obtaining these models, editing them, and simulating ac-
cordingly. This end-to-end approach enables the analysis, pro-
totyping, and optimization of buttons, and supports exploring
designs that would be hard to implement mechanically.

Author Keywords
Button; haptic; modeling; simulation; tactility; force
feedback; vibration; input device; haptic rendering; FD
model; FDVV model.

CCS Concepts
•Human-centered computing → Haptic devices; Interac-
tion devices; Keyboards; Interface design prototyping;

INTRODUCTION
This paper investigates the simulation and interactive design of
push-buttons. Many push-button designs use a spring-loaded
slider: when the slider is pushed to the activation point, a
binary input is registered. Upon release, it returns to the initial
state. More generally, buttons are transducers that register a
discrete event from physical motion [28, 33, 49]. Numerous
types exist, using spring-loading but also other mechanisms,
such as rubber and metal domes. Interestingly, each button is
unique in its tactility or tactile response characteristics [26,40].
Gamers, programmers, typists, and hobbyist groups alike have
a keen interest in tactility, which is associated with sensory
experience and performance [2, 12, 49]. However, despite the
popularity and importance of buttons, researchers have paid
relatively little attention to their design.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CHI ’20, April 25–30, 2020, Honolulu, HI, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6708-0/20/04 ...$15.00.
http://dx.doi.org/10.1145/3313831.3376262

Press Release

Figure 1. A force–displacement–vibration–velocity (FDVV) model rep-
resents speed-dependent physical responses of a button when pressed.
We show methods for capturing button presses as FDVV models, ren-
dering them in a physical simulator, and editing and optimizing these in
software. The press and release models shown are for a 4 mm tactile but-
ton. Blue curves represent the corresponding (velocity-agnostic) force–
displacement model typically measured by a probing machine with static
and slow velocity.

Simulators have taken on a major role in most branches of
engineering and design, where they are used to study reality,
predict consequences of design decisions, and derive and op-
timize solutions. Dedicated simulators can do the same for
button design. We believe that one obstacle has been the lack
of an accurate yet practical simulation device. It should be able
to realistically reproduce different tactilities so that designers
and researchers could explore and test them at little cost.

Accurate simulation of button-pressing is challenging, though.
Although a press and release occurs in about 100 ms [30], a
wealth of sensory feedback is generated [9, 49]. Slow and
fast mechanoreceptors [7, 57, 65] deliver information on spa-
tial patterns, change in the contact area at the fingertip, the
roughness of the contact support, stretching of the skin, sub-
tle and rapid changes in force, and vibrations during a press.
Meanwhile, proprioception provides feedback on displace-
ment, as detected via the joints and muscles of the finger [59].
This information is transmitted through the spine at high rates,
up to 1 kHz [13, 20], and contributes to constructing the felt
sensation of a press [1, 49]. Hence, to reproduce a realistic
button sensation, the simulator needs to capture those physical
characteristics of a press that dominate that sensation.

While pre-existing simulators can render tactile and linear
buttons [14, 37], we found that force–displacement (FD) ap-
proaches cannot accurately render other than a simple linear
button. In addition, the perceived realism of the rendered but-
tons has not been properly evaluated, and no methods have
been offered to help designers and engineers exploit such

http://dx.doi.org/10.1145/3313831.3376262

Button capture

Filtering,
Model Fitting

Force, displacement,
vibration, velocity data Iterative

Compensation
Physical

Simulator

FDVV model Actuation signals Button simulation

B-spline
models

Force, displacement,
vibration, velocity data

User

OptimizationDesign tool

Figure 2. Overview: An end-to-end approach to button simulation. To capture an FDVV model of a button, sensors are placed on the finger, and the
button is pressed multiple times. The resulting force, displacement, vibration, and velocity data are filtered, and lower-parametric B-splines are fitted
for use of Bayesian Information Criteria (BIC) as the fitness metric. A designer can edit the model produced. To render the model with a given physical
plant, an iterative compensation process computes how to cancel the plant’s own transfer function. The resulting actuation signals drive the simulator.

simulation. We believe this to be due to three engineering
challenges: (1) modeling, (2) simulator construction, and (3)
model–simulator separation. Firstly, prior work has modeled
buttons’ response as the displacement-dependent change in
force [14, 37, 46]. However, as we show in this paper, an FD
model is adequate only for linear buttons pressed at extremely
low speed. It is known that the physical response of a button
depends also on velocity and acceleration [5, 6, 40], and that
buttons elicit a vibration response. Vibration affects the per-
ception of button-pressing [47], and it can be so prominent that
it produces an illusion of force change [17, 25, 63]. Secondly,
the simulators created thus far have fallen short of the oper-
ation rate needed for a button press. General haptic devices
such as Phantom [16,41,58] and inForce [46] operate at 60 Hz,
while the skin’s mechanoreceptors fire at about 1,000 Hz and
respond to tiny changes in force [13, 20]. Simplistic controller
approaches may have further curbed attempts to render any-
thing other than a linear button. To our knowledge, previous
work has, at best, applied a linear PID controller to render the
response at the force actuator of a simulator, although this is
generally recognized as insufficient for nonlinear plants [8,69].
We should emphasize, thirdly and finally, that the button mod-
els must be editable if they are to be of practical use. This
calls for model–simulator separation. By avoiding the device-
dependency of models, we can support the meaningful editing
of buttons – by designers and by software.

To address these challenges, we propose an extended model
and an end-to-end simulation pipeline around it. Our ap-
proach allows simulating more button types than previously,
among them tactile-type buttons and buttons with different
click reactions and travel ranges. Furthermore, it permits
the analysis and editing of buttons. Our work centers on
the Force–Displacement–Vibration–Velocity (FDVV) model,
illustrated in Figure 1. It adds vibration response and velocity-
dependence on top of the FD model. In our implementation,
vibration is sampled thorough a microphone during a switch
press, and multiple FD curves are sampled, at several speeds.

We solve several engineering challenges connected with ambi-
tions to capture and simulate buttons via FDVV models.

In particular, we present methods developed for (1) captur-
ing the FDVV response of a button, (2) computing a lower-
parametric FDVV model from the measurement data obtained,
and (3) actuating an FDVV model for a given physical plant.
Figure 2 gives an overview of the end-to-end approach. The
data (force, displacement, vibration, and velocities) obtained
during capture are filtered and modeled via B-splines [66],
collapsing the data into a lower-dimensional and more manip-
ulable model. For rendering it, we present a novel simulator
construction for FDVV models. This is capable of detecting
displacement to µm precision at a high sampling rate (1 kHz)
and can produce a wide range of force (up to 4.4 N) and vi-
bration (50 Hz – 20 kHz) feedback. In contrast to previous,
60 Hz simulators, our simulator can render high-fidelity vi-
bration arising from the rapid force change near the snap and
bottom-out points during the press [29]. It also has a mechani-
cal limiter for rendering a button with various travel distances
(0–6.2 mm). Thanks to the iterative compensation method,
which translates an FDVV model into actuation signals that
cancel out the simulator plant’s own transfer function, one can
assign button designs from software without hardware tweaks.

In summary, this paper makes three contributions. We present
advances in modeling and simulator design that extend the
range of supported button types. Secondly, we report the
results of a controlled study showing that the FDVV model
yields higher perceived realism than FD modeling. Finally,
the approach opens new possibilities in design and prototyp-
ing; especially, by reducing the effort of exploring designs.
We demonstrate applications in interactive button-editing,
software-side optimization, and prototyping of innovative but-
ton designs the mechanical structure of which would be hard
to fabricate. The general principles we applied in the simula-
tion pipeline can also benefit future research toward accurate
haptic rendering. For example, simulating elastic materials.

BACKGROUND
Physical buttons are electromechanical devices that make or
break a signal upon pressing, then return to the initial (re-
pushable) state upon release. There is incredible variety in
the constructions that fit this definition. Our discussion here
focuses on commonplace push-buttons of keyboards and but-
ton panels. Mechanical keyswitches, rubber domes, and metal
domes are the most typical structures. Numerous other design
parameters exist, such as physical properties of the keycap
(width, slant, and key depth), the materials used (e.g., plastics),
and system-level feedback (modalities and latencies) [35].
The response upon pressing can be characterized via the the
force–displacement function or force curve [35,54]. Actuation
(press-down) and release curves often differ. The FD curve
is known to affect not only sensation but also joint kinemat-
ics [22], muscle activity [27, 54, 55], and the user’s aiming
performance [49]. Linear buttons have the feel of pressing a
spring; there is no tactile landmark or “bump” during press-
down. A tactile-type button has a so-called snap ratio, which
determines the strength of its tactile bump. Rubber-dome but-
tons utilize a snap ratio greater than 40%. Some tactile buttons
emit an audible “click” sound near the snap point. Travel
distance is the total distance before the keycap hits the bottom,
and the distance at which the button is activated is called its
activation point [28]. While these features can be modeled
with FD curves, we stress again that FD neglects velocity and
vibration characteristics.

Capturing and modeling physical buttons
There are two main approaches in haptics research applicable
to the modeling of buttons. The first is an analytical one aimed
at formulating equations that capture the mechanics of haptic
interaction, which in the case of buttons would involve the
forces, vibrations, etc. during a press. Since these interac-
tions are complex, analytical models almost inevitably need to
make simplifying assumptions. For example, the spring–mass-
damper system in buttons could be described as a lumped
mass [43]. Analytical models applicable to buttons include
modeling of spring–mass-damper systems [5] and friction [19].
While prior applications to buttons and knobs do exist [3], the
ones presented thus far are too low-parametric to capture the
rich design space of push-buttons.

The second approach is a reality-based, or data-driven, one
that starts with physical measurements and constructs models
based on data. In the case of buttons, one starts by physically
probing a button to measure the interaction forces between the
button and the probe as displacement and even higher-order
variables. Displacement has been approached in such a man-
ner outside the button domain. One could cite as example
applications the automotive gearshift [4], non-rigid materials
[46, 60], and human tissue [50]. Displacement-only models
are relatively simple. For buttons, this approach is insufficient.
There have been studies examining higher-order variables,
such as velocity [67] and acceleration [11, 38, 39]. This, how-
ever, complicates everything from measurement to simulation.
Nonetheless, we followed the reality-based approach. We cap-
tured the forces involved, displacement values, vibration, and
pressing velocities, and we found a way to collapse the data to
a more understandable, lower-parametric model.

Haptics rendering
Our work is aligned with haptics research pursuing the cre-
ation of rich and realistic sensations [24]. While this area of
research is too broad to review here, some relevant findings are
worth mentioning. Firstly, research has looked at advanced fac-
tors affecting haptic perception, such as friction, temperature,
or texture [15]. However, the focus has been on exploration or
manipulation of objects, which is quite different from a key-
press, which occurs in around 100 ms. The rapid compression
and mechanical vibration of tissue in the fingertip are core
elements of a button press. Secondly, general-purpose haptic
simulators have been produced that could be used for buttons.
The Phantom device [16, 41, 58] is a 6-DOF pen-type general
force-rendering device capable of emulating the softness of
deformable objects. However, a low operating rate (60 Hz),
excessive degrees of freedom (six instead of one), and lack
of vibrotactile simulation limit its use for buttons. Softness
displays [44, 46, 62] too might aid in simulating the stiffness
of a button, but these are restricted to so-called simple stiff-
ness, which is inadequate for buttons. Finally, pseudo-force-
feedback has been explored. By changing the contact area of
the finger [15, 21] or using electro-tactile displays, one can
create a softness-like sensation [23, 64]. However, this is not
central to commodity push-buttons’ design.

Button simulators
Prior work on button simulation has been limited to static
(speed-agnostic) FD simulators, which have the limitations
described above. Doerrer and Werthschuetzky [14] enabled
users to edit FD curves in software, and Liao et al. [37] have
presented an FD simulator. The Phantom haptic interface [41]
also can render a virtual button. Yet, as other simulators do,
these too need an exaggerated FD curve to render the “snap”
feeling of a tactile button. These papers omitted velocity
and vibration dynamics from their model. Moreover, to our
knowledge, the perceived realism achievable by FD simulators
has not been empirically validated thus far.

BUTTON CAPTURE
Most previous work has captured buttons by a single-FD curve
model. This approach has become conventional also in the way
manufacturers present buttons on datasheets. However, button-
pressing involves complex phenomena affected by the varying
stiffness and damping effects produced by mechanical design.
The stiffness effect means that the resisting force changes as
a function of the button’s displacement. The damping effect
entails the resisting force changing with the button’s velocity.
An FD-only model captures neither the damping effect nor the
high-frequency structural vibrations of a button press.

We propose an extension to the physical measurement of the
tactility characteristics of push-buttons. Our capture method
features three novel elements: (1) We measure presses under
different velocities. (2) A human finger is used for pressing, as
opposed to a rigid, static-velocity probing object as in earlier
work. This allows us to better cover the response envelope
people encounter in everyday button-pressing, via a procedure
that requires no more than a few minutes to complete per
button. (3) We record vibrations, which are important for

Force sensor
with a conical tip

Retroreflective
marker

Microphone

Figure 3. Button capture of a real button (4 mm tactile button). A force
sensor is worn on the fingertip. Reflective markers (for motion tracking)
and microphone are attached on keycap.

covering more advanced button types. This necessitates a
more complex measurement setup than before.

Setup: Our measurement setup is shown in Figure 3. Two
retroreflective markers are attached to sides of the keycap.
A motion-tracking system (OptiTrack Prime 13, 256 FPS)
records the displacement of the button during a press. Also,
a microphone (KY-038) is attached to the keycap, to detect
vibration during button presses. On the user’s index finger is
a force sensor (Honeywell, FSAGPDXX001RCAB5), with a
conical tip (ABS, 3D printed, Bottom and top: 12 and 5 mm-
diameter circles. Height: 5 mm) attached. A microprocessor
(Adafruit Metro M0 Express) samples both sensors with its
internal 10-bit ADC at 1 kHz frequency, which is the highest
sampling rate allowed for the force sensor. Synchronization
between the sensor data and the motion data is handled via an
optical clapperboard (three 850 nm IR LEDs). The micropro-
cessor is attached to a switch that turns on the LEDs. When
the switch is triggered, the microprocessor and the motion
tracking system record a reference point for synchronization.

Procedure: A participant is asked to wear the sensors and
press the given button, following the instructions on the display.
A velocity indicator is presented on this display, which shows
animation for various velocities. The velocity indicator also
creates a beep sound indicating the moment of contact and that
of hitting the bottom. Note that we stated that the animation
refers to the rate of pressing and the average velocity, not the
moment-by-moment velocity. The participant is asked to press
the button at the specified pace. We go through velocities of
50, 100, 150, and 200 mm/s, collecting 15 presses per velocity.

Example buttons: The paper reports on studies of six phys-
ical buttons: Cherry MX Clear and Brown (4 mm, tactile),
Cherry MX Black and Red (4 mm, linear), HP PR1101U (3.6
mm, tactile), and MacBook Pro 2011 (2.2 mm, tactile). They
have distinct haptic profiles (linear/tactile) and travel ranges.

FDVV MODELING
The raw measurement data must be transformed into a lower-
dimensional FDVV model to allow efficient design and op-
timization. A series of preprocessing steps are followed to
produce a synchronized and filtered dataset from multiple

data sources. We then fit a B-spline model, using Bayesian
Information Criteria (BIC) [31].

Preprocessing
The outputs of button capture are (timestamp, force, sound)
data from the microprocessor and (timestamp, the 3D position
of marker1, the 3D position of marker2) data from the motion
tracker and vibration data. Our goals are to (1) filter out noise
and outliers and (2) synchronize the two data sources.

Step 1, filtering: We pass force and vibration data through
a low-pass filter for antialiasing, before the analog–digital
conversion of the microprocessor. The filter consists of a
resistor–capacitor circuit (R 333 ohm, C 1 uF) with a cutoff
frequency of 500 Hz, using a Nyquist frequency of 1,000 Hz.
Gaussian filters (σ = 1.2 mm) are then applied to both force
and displacement data, separately, for further denoising.

Step 2, synchronization: We then synchronize the data from
the microprocessor and motion tracker, using the IR LED light
data to find keyframes. Because the microprocessor runs at
1,000 Hz and the motion tracker at 256 Hz, resampling is
required before synchronizing of the two sides. We chose to
upsample displacement data by matching the of the motion
tracker to the timestamp of the microprocessor, via linear
interpolation. The displacement data get resampled up to
1,000 Hz frequency, after which we have synchronized the
signals. We need resampling also to register force data against
displacement (here, sampled every 50 µm).

Step 3, outlier removal, averaging and smoothing: We use
the resulting dataset to filter out incomplete button presses
(ones where the button did not hit the bottom). Finally, we
averaged the force data of the representative presses at each
displacement point (every 50 µm). A Gaussian filter (σ =
0.8 mm) is then applied to smooth the averaged curve.

Step 4, synchronizing vibration data: Note that vibration data
did not pass through steps 3–4. In most buttons, vibration
is associated with the snap. This can be programmatically
exploited to synchronize the vibration signal. On the other
hand, one can ignore measurements detected in the beginning
and the end portion, because these are caused mostly by the
finger hitting the keycap or the keycap hitting the bottom.
Hence, we consider only the middle part of the press, for
which we use threshold-based event detection to find the onset
of the vibration. For some buttons, this sound wave can be
very subtle and rapid (typically <25 ms), making it hard to
detect programmatically. To compensate for this, we can resort
to a human observer (see “Iterative Compensation,” below).

B-Spline Fitting
The preprocessed dataset is still too high-dimensional for edit-
ing by designers. For example, a typical 4 mm button re-
quires approximately 800 parameters in our procedure. Hence,
we use B-splines to achieve a lower-dimensional parametric
model. While B-splines offer a suitable model for continu-
ous multimodal data, there is still the question of how many
control points are needed. We studied this by fitting B-spline
models to our button dataset. To control against overfitting,
we used Bayesian Information Criterion (BIC) [31, 53] for

a b

c d

Tactile Linear

Figure 4

Figure 4. We use B-splines to obtain a lower-dimensional, editable FDVV
model from the capture data. (a) We found that 15 control points is
the ideal number of parameters to model six commodity buttons. (b)
With fewer control points, the model underfits essential features of a
button response. Panes c and d show example results for tactile and
linear buttons (15 control points).

the fitness criteria. To reduce the number of parameters even
further for feasibility for human editing, we added a custom
penalty term: Complexity Penalty, P. This results in a modified
BIC* function:

BIC* = ln(n)kP−2ln(L̂) (1)

Where n stands for the number of observations, k for the num-
ber of parameters (control points), and L̂ for the maximized
value of the likelihood function of the model. P is the added
Complexity Penalty value, which is set to 2.5. Figure 4 (b, c,
d) gives examples of fitting for a pressing segment of a certain
velocity for Cherry MX Clear button.

Following this procedure, we found 15 B-spline control points
was an ideal tradeoff for the six-button dataset with root mean
square error of 0.14 cN; see Figure 4 (a). We also registered
travel range, the activation point, and the vibration point in
the resulting models, as examples shown in Figure 4 (c, d).

BUTTON SIMULATOR
Ours is the first physical simulator capable of the high-fidelity
rendering of FDVV models. An overview is given in Figure
5. Our first design goal was to provide the high-frequency re-
sponse and high-resolution rendering of forces and vibrations
typical of buttons. The second was to enable full control from
the software side.

Sensors and actuators: Figure 5 presents the four main com-
ponents: (1) a linear force actuator (Moticont HVCM-025-
022-003-01), (2) a linear position sensor (LVDT MHR 250,
resolution: 0.05 mm), (3) a voice coil acting as a vibrotactile
motor (Tectonic Teax13C02-8), and (4) a servo motor (Tower
Pro Micro Servo, torque: 1.8 kg/cm). The force actuator, the

Travel range
limiter

Vibrotactile
motor

Travel range
control

Servo
motor

Keycap

Linear force
actuator

Linear position
sensor

Displacement,
velocity Force, travel range

controll

Vibration
control

I2C

Actuating
 vibration

Actuating
 force

Adjusting
 travel range

Figure 5. Physical simulator construction for haptic rendering of FDVV
models. Our simulator includes a 1D sensor that tracks displacement,
a 1D force actuator delivering various levels of forces, and a servo mo-
tor drives the travel-range-adjustment component. The components are
controlled by a microprocessor. The other microprocessor controls a vi-
brotactile motor mounted near the keycap.

sensor, and the servo motor are controlled by an Adafruit It-
syBitsy M0 board, which serves as the main processor of the
prototype. The vibrotactile voice coil is driven by an Arduino
Uno board and wave shield (Adafruit Wave Shield for Arduino
Kit). These two boards are connected via the I2C protocol.
When adjustments to the overall travel range are required, the
ItsyBitsy board sends a command to the servo motor to adjust
the location of the Travel Range Control, which further alters
the lowest reachable displacement of the Travel Range Limiter
and produces varying travel. When vibrotactile feedback is
required, this board communicates with the Arduino Uno via
I2C and asks it to drive the vibrotactile motor (voice coil) to
present pre-recorded wave files.

Microprocessor design: Before the simulation, the actuation
signals (see “Iterative Compensation”) are uploaded to the
main microprocessor (Adafruit ItsyBitsy M0) and it automat-
ically sets the button travel range. During a simulation, the
linear sensor constantly sends the reading value to the mi-
croprocessor. A moving-average filter (window size = 25)
is applied here for denoising the reading from the position
sensor. After the microprocessor has processed the values
sent, it calculates the current displacement of the button and
estimates the user’s pressing velocity. Then, it determines
the corresponding Pulse-width modulation (PWM) signal and
sends it to the linear force actuator. At the displacement where
vibration starts, the microprocessor sends a command to the
Arduino Uno for emitting the vibration. A high operating
frequency is used (1 kHz) for the ItsyBitsy M0 board.

Spatial and temporal accuracy
We measured the spatial accuracy of the simulator via a prob-
ing device consisting of a linear actuator and a probe attached
to a force gauge [37]. The probing velocity was 0.5 mm/s. We
used this device to profile a 4 mm Cherry MX Clear button,
checking the intended outputs of the simulator against the
measurement results. Over multiple repetitions, we learned
that the simulator can reproduce the force responses very ac-
curately, with only 1.44 cN mean error (SD 1.68 cN). Time

spent on each displacement sensing and computing actuation
command is about 0.3 ms. From the command of rendering
force to force generated takes less than 1 ms. Latency from
sending the vibration command to its actuation is about 7ms.
We compensated this latency by emitting vibration 300 µm
prior to the target starting point.

Simulation procedure
Prior to simulation, the actuation signals obtained from itera-
tive compensation (see later) are uploaded to the microproces-
sor. Near the beginning of the press – i.e., at 0.5–1.0 mm of
distance traveled – the microprocessor calculates the pressing
velocity for the press. At least three timestamped samples are
needed. From those samples, the simulator computes veloc-
ity and switches to the corresponding actuation specification.
That specification is used to determine the resisting force and
the vibration for the sensed level of displacement. To simulate
the vibration, we followed an event-based approach wherein
vibration recording is initiated at the right displacement [32],
creating a snap-like sensation.

ITERATIVE COMPENSATION
A key objective in our work is to separate the model from the
simulator. Any force actuator has its own transfer function
in the play that must be canceled out if an FDVV curve is
to be simulated correctly. To our knowledge, no prior work
on button simulation has considered this issue, which may
explain the lack of empirical evaluations of these simulators.
To address the issue, we introduce an iterative compensation
method shown in Figure 6:

Compensation
gain, (error)

Actuator
transfer
function

Finger

Comparator

Reference
force

yd(p)

yk(p)

errorkuk(p)

Increase or decrease based on
errork and compensation design

Figure 6. Iterative compensation finds a way to render an FDVV model
on a given simulator plant.

The idea is to raise or lower the force-actuation signal ampli-
tude of each displacement point until the desired resisting
force is measured by the sensor against the keycap. Per-
displacement and per-speed repetition can be applied until
the desired FDVV signal is measured from the sensor. This
iterative compensation process can be expressed as

uk+1(p) = uk(p)+Γ(errork)(yd(p)− yk(p)), p ∈ [1,n]
(2)

Here, uk(p) is the actuation signal of a given displacement
point p in the current iteration, and uk+1(p) is the actuation in
the next iteration signal of the same displacement point. yk(p)
is the force detected from the sensor worn on the fingertip,
and yd(p) is the desired target force at that given displacement
point. Γ(error) represents the proportion of adjustment of the
actuation signal that must be applied, based on the error value
in the current iteration (errork). The error from the current

a b

c d

Force sensor with
a conical tip

Figure 7. (a) During the iterative compensation, a force sensor is worn
on the participant’s fingertip which gathered force data and sent it to
the controller. (b) Some instances of the evolution of error values during
the process. The blue curve represents the errors of (c,d) which fell from
17.89 cN in the first iteration to 2.93 cN in the 10th. (c) An example
keypress from which we can see that the sensor worn on the fingertip
shows convergence with the reference after the compensation process
is complete. (d) The actuation signals starting at a random force level
and being gradually tuned. Note that we transform the actuation signals
linearly into force level (cN) that can be measured in a steady machine-
probing situation.

iteration is defined on a per-curve basis as follows:

errork =α ·
Σn

p=1|yd(p)− yk(p)|
n

+(1−α)· max
p∈[1,n]

|yd(p)− yk(p)|

(3)
In this definition, two terms make up the error. The first
is the overall difference between the target FD curve and the
measured curve. The second is the displacement error at which
the largest error is observed. α is the weight applied between
thees two, which we set to 0.7 based on experiences.

Procedure: We first upload the reference data (FDVV model)
to the simulator. A participant is asked to press the button
repetitively in line with the speed indicator presented by a
GUI. Figure 7 illustrates the whole process. The force sensor
is connected to the same microprocessor that runs the simu-
lator. The sensor (response rate: 1 kHz) captures the force
responses during a press by the fingertip. The value sensed is
passed through a resistor–capacitor filter with a 498 Hz cutoff
rate, to reduce within sensor noise. All the resisting force
samples within a 50 µm interval are aggregated and averaged
for this displacement point. In our experience, the procedure
converges after only 8–12 presses; however, each button needs
to be modeled at multiple velocities. With four velocities,
there are 240 presses in total (4 velocities × 4 rounds × 15
presses) to compute its actuation signals. A typical example is
presented in Figure 7 (b): errork decreases rapidly to below
3 cN within 10 presses.

Outputs: After the process is complete, the microprocessor
records the actuation signals that resulted in the minimal er-
ror. For a given reference force curve, we ran the iterative
compensation process four times, obtaining four series of ac-

a b
Figure 8. Final, linearly interpolated actuation signals: (a) Example ac-
tuation signals before linear interpolation, here shown for a Cherry MX
Clear with various velocities, which are the same as in Button Capture.
(b) The same data after linear interpolation.

Am
pl

itu
de

(v

ol
ta

ge
)

Time (second)a b c

Figure 9. Example decaying sinusoidal-wave templates. They share the
same frequency (239 Hz) and duration (16 ms) which are captured from
Cherry MX Clear, and the amplitudes and shapes vary for tuning: (a)
amplitude decreases from ±2.43 to 0 Vol, (b) amplitude decreases from
±2.43 to ±0.3 Vol, and (c) amplitude decreases from ±2.43 to ±0.6 Vol.

tuation signals. We then averaged these at each displacement
and finally applied a Gaussian filter (σ = 1.2 mm) to smooth
the signals. After all the force-actuation signal curves were
obtained (see Figure 8 (a)), we linearly interpolated the sig-
nal curves to form denser, more continuous curve sets that
responded to more velocity changes (see Figure 8 (b)).

Optional human-in-the-loop vibration tuning
As described earlier, sometimes the vibration emitted at the
snap point is weak and our sensor does not reliably pick it up
accurately. Also, sometimes when vibration is measured as a
soundwave, it may fail to reproduce the same sensation when
reproduced using the vibration motor. In order to produce
the desired snap sensation, the vibration needs to be accen-
tuated. To this end, we devised a human-in-the-loop method
for tuning the vibration response at the simulator side. To
further render more realistic vibrotactile feedback, future work
should consider more sophisticated modeling and rendering
techniques [18, 48, 51, 68].

Procedure: We obtained 3 features from vibration measure-
ments: (1) vibration onset, (2) duration and (3) frequency.
Afterward, an algorithm generated several vibration templates
that match the recorded vibration and duration. The generated
templates are decaying sinusoidal waves with various frequen-
cies and accentuated amplitudes. The generative method we
follow is by Park et al. [52]. These sound-wave templates were
uploaded to the Arduino Uno, which simulates them, using the
vibrotactile motor (see Figure 5). Some templates are shown
in Figure 9. Finally, as part of our human-in-the-loop tuning
process, we asked a human observer to press the simulated
button at the pace shown in the animation (see above). The
user rated each button-design–vibration combination. We re-
peated this process for all velocities. The best-rated vibration
sets were selected as the final actuation signals for that button.

A USER STUDY: PERCEIVED REALISM
We assessed the perceived realism of the rendered buttons in a
controlled study. We adopted the idea of ABX test as used in
psychophysics for comparing two sensory stimulus options for
identifying a target [10, 29, 42, 45]. A participant tries a real
reference button (X) and is then asked to press two simulated
buttons (A, B) and decide which offers a more realistic render-
ing of it. The A, B buttons are rendered via the same physical
simulator, and the user can try out the three buttons as many
times as desired. We compared our FDVV models against
speed-agnostic FD models because it represents the prevail-
ing understanding of button tactility represented in academic
literature, hobbyist groups, and manufacturer datasheets.

Method
Participants: We recruited 12 participants (6 females) from
a local university, of ages 21–41 (mean 29.75). All of them
reported typing and other button-pressing experience. They
were rewarded with a movie ticket (valued at 14 euros) for the
60-minute study.

Task and apparatus: The study compared six physical but-
tons listed previously in “Button Capture”. They differ in
characteristics, but all are realistic. All the buttons were cap-
tured and transformed into (1) a single-FD model and (2)
FDVV models. Actuation signals were computed as described
in the previous section.

To prevent users’ haptic judgments from being biased by their
vision, the simulator was placed inside a black box with a hole,
into which the user reached to press. The target buttons and
the simulator were at the same height. The participants were
asked to wear a headset playing white noise and earmuffs, to
isolate hearing during the study. A graphical interface showed
which of the two buttons (labeled A and B) was currently
active. The information displayed was the name of the target
button (one of the six), the simulated button’s label (A or B),
and the current trial number. Double-blind administration was
employed: neither the experimenter nor the participant knew
which button (A vs. B) used FDVV and which used FD.

Procedure and experiment design: The participants were
told about the simulator and the purposes of the study. They
were asked to explore the real buttons once, with different
pressing velocities. We did not repeat this instruction during
the study proper, though; we let them decide what was natural
for them.

Again, each round featured a reference button and two simu-
lated buttons. The interface identified the reference button and
the label of the currently active button (see Figure 10). The
participants were told that there are two simulated buttons in
each round, denoted as button A and button B. In each round,
participants were instructed to press the reference button and
to feel it. After that, they were asked to try the alternative sim-
ulations, labeled A and B. They could switch among the three
buttons as many times as they wished. When ready to make
their judgment, they were asked to indicate which button had
more realism (A, B, or equal) and to rate the perceived realism
of A and B separately, on a seven-point Likert scale. After the
study, an interview was conducted. We gave a three-minute

a

Study interface

Target buttons

b

Simulator

Figure 10. We assessed the perceived realism of the buttons in an ABX
task. Firstly, (a) a participant was shown a (real) reference button (X).
Then (b) the participant could try one simulated button (either FD- or
FDVV-based) on the simulator at a time. The display showed the la-
bel for the active button (A or B). Afterward, the participant indicated
which of the two (A or B) was more realistically rendering X.

break after every 20 minutes of button presses, to minimize
fatigue. There were six rounds for each of the six buttons, mak-
ing 36 trials in total. The trial order of the six button designs
was counter-balanced by Latin square. The assignment of the
FDVV and FD models to the labels, A and B, was randomized
at each trial.

Results
The results support the FDVV approach. It was associated with
higher perceived realism for all the simulated buttons. The
participants chose the FDVV model as more realistic 77.31%
of the time. An overview is shown in Figure 11. We examined
the ratings further by using Wilcoxon Signed Ranks Tests.
The analysis showed that there are statistically significant
differences for each target button between the FDVV and
single-FD models:

1. For the Clear button, the median FDVV model ranks (mdn
5.16, mean 4.9, STD 0.72) were significantly higher than
the median single-FD ones (mdn 3.83, mean 3.72, STD
0.92), with Z =−3.06, P = 0.002.

2. For the Brown button, the median FDVV model ranks (mdn
4.92, mean 4.64, STD 1.02) were significantly higher than

tactile, 4mm tactile, 4mm linear, 4mm linear, 4mm tactile, 3.6mm tactile, 2.2mm

Figure 11. Users in the ABX identity-matching study rated FDVV-based
simulations as more realistic than FD-based simulations. Statistically
significant differences were found for all the target buttons. The error
bar in the figure is 1 STD.

the median single-FD ones (mdn 3.83, mean 3.86, STD
0.87), with Z =−2.748, P = 0.006.

3. For the Black button, the median FDVV model ranks (mdn
5.33, mean 5.4, STD 0.53) were significantly higher than
the median single-FD ones (mdn 3.83, mean 4.25, STD
0.72), with Z =−2.94, P = 0.003.

4. For the Red button, the median FDVV model ranks (mdn
5.33, mean 5.14, STD 0.9) were significantly higher than
the median single-FD ones (mdn 4.67, mean 4.58, STD
0.54), with Z =−2.158, P = 0.031.

5. For the HP keyboard (spacebar), the median FDVV model
ranks (mdn 5.33, mean 5.03, STD 0.58) were significantly
higher than the median single-FD ranks (mdn 3.83, mean
4.0, STD 0.85), with Z =−2.987, P = 0.003.

6. For the MacBook Pro keyboard (spacebar), the median
FDVV model ranks (mdn 5.42, mean 5.57, STD 0.57) were
significantly higher than the median single-FD ranks (mdn
4.67, mean 3.67, STD 0.9), with Z =−3.06, P = 0.002.

From Figure 11, we see that the smallest difference between
the FDVV and FD simulation was for the Red button. This is a
linear button, and the FD model offers a reasonable simulation.
One participant stated, “The red one has a smooth (linear)
feeling, and it’s lighter than the other buttons. I feel two
models with a similarly smooth and light feeling, so it’s hard
to tell the differences.”

APPLICATIONS
We show three applications exploiting the approach.

Human-in-the-loop button optimization
Firstly, we demonstrate the optimization of a button for an
interactive task. We look at a temporal pointing task with no
visual feedback [34]. It resembles games where a response
must be elicited at just the right time (for instance, to catch
an enemy). Our goal is to optimize the button’s FDV design
and also its activation point. Velocity-dependent properties
(the last V in FDVV) were excluded due to assuming a person
presses a button at a similar speed all the time. The opti-
mization we used was Bayesian optimization (BO), which is
favorable for conditions wherein evaluations are noisy and
expensive [61]. The objective in BO is to minimize a user’s
mean asynchrony [34, 56], or the mean difference in time be-
tween the target and the user’s elicited response. Figure 14
depicts some example FDV models generated by the optimizer.
To keep the study below one hour in total length, we limited
the BO’s task to three control points and two other button
parameters. We mapped this to the force-actuation signals,
which the BO then manipulated so that once a new design
is sent to the simulator, users can instantly try it out without
iterative learning.

Method: We recruited 10 participants (4 females) from a
local university, of ages 20–40 (mean 26). The study had two
phases, training and validation. In the training phase, they
were asked to press the button when the LED strip showed
a bullet to have reached the center of the target zone. Two
levels of task difficulty (easy = 100 pixels/second; difficult =
150 pixels/second) were used. For each level, 27 trials were
collected and used to compute the mean asynchrony score.

target zone moving bullet

Figure 12. Button optimization was evaluated in a temporal pointing
task. Users were asked to hit a temporal target by pressing a button
at the right time, as a moving bullet reaches the target zone. After the
optimal design was learned, the actuation signals were translated back
into an FDV model via the capturing process.

The whole process took about 60 minutes. Short breaks were
given after every 15 minutes of presses.

Our BO implementation was based on Python’s GPyOpt li-
brary1. In each iteration, it changed the parameter values
of the button model. We had three control points in the
FDV and three other parameters: x1,x2,x3 (displacements
of three control points) and y1,y2,y3 (actuation signals of
those control points). The ranges of these six parameters were
x1 ∈ [0,1),x2 ∈ [1,3),x3 ∈ [3,6.2) and y1,y2,y3 ∈ [20,180].
The other two additional parameters were activation point, pa,
and vibration point, pv. The ranges of these two parameters
were pa, pv ∈ [0.5,5.5]. An additional microprocessor, an Ar-
duino Uno, was set to drive an LED strip (Adafruit DotStar)
that displayed an array of LED lights with the bullet animation.
This microprocessor was connected to the button simulator by
software serial port. When the button passed the activation
point, the microprocessor of the simulator sent a triggering sig-
nal to the LED strip, which would then calculate the temporal
error of this press. After 20 presses, we calculated the mean
asynchrony and sent the information back to the simulator.
Then, the optimizer created a new design of button for the
next iteration, based on the data collected, and triggered the
simulator to reconfigure itself accordingly.

In the testing phase, a week after the training phase, the opti-
mized button was compared to other non-optimized buttons:
four 4 mm mechanical ones (Cherry MX Clear, Brown, Black,
and Red) and a random button design (all parameters are ran-
domly given within the defined range). Two difficulty levels
are assigned in a counter-balanced order. Each button appeared
twice per difficulty level, in counter-balanced order, and the
participant needed to press the button 20 times in every trial.
In total, we collected 240 observations of mean asynchrony
(10 participants × 2 difficulty levels × 2 rounds × 6 buttons).

Results: In Figure 13, we present some instances of optimal
button designs. For the difficulty level Easy, the resulting
mean asynchronies were 65.8 ms (STD 6.15), 83.6 (STD
7.65), 88.04 (STD 7.82), 81.65 (STD 6.19), 84.28 (STD 6.75),
and 100.78 (STD 6.89), for the optimal, clear, brown, black,
red, and random button, respectively. For the Hard difficulty
1 See http://sheffieldml.github.io/GPyOpt/

a b

Figure 13. An example outcome of Bayesian optimization for a user un-
der the (a) “Easy” and (b) “Hard” task condition.

a b
Figure 14. Button optimization significantly decreased mean asynchrony
in temporal pointing for both (a) easy and (b) hard tasks. The error bar
in the figure is 1 STD.

level, the resulting mean asynchrony values are 77.3 ms (STD
6.89), 93.43 (STD 7.56), 97.48 (STD 7.69), 96.9 (STD 7.61),
96.65 (STD 6.36), and 108.22 (STD 8.77), for the optimal,
clear, brown, black, red, and random button, respectively. A
two-way repeated measures ANOVA was conducted. The
main effect of buttons on mean asynchronies is significant,
F(5,95) = 10.724, p < 0.001. The post-hoc tests with Bonfer-
roni correction confirmed the optimal button design as indeed
outperforming the rest (p < 0.05).

Interactive button design
We implement an interactive button-editing tool that lets engi-
neers freely create and edit button designs (Figure 15). Using
the tool (implemented on macOS using Swift), designers can
manipulate force levels through 15 draggable control points
to create a single-FD curve. Travel range, activation point,
and vibration point can be edited textually. Next, the model
is converted to high-dimensional force actuation signals (with
B-spline fitting and iterative compensation). Finally, these
signals are used to simulate the button. Several button de-
signs implemented by the interactive button-editing tools are
presented below, under “Innovative button designs.” While
the tool allows for editing of one FDV model at a time, our
backend (Python) also allows for more advanced editing, such
as assigning a specific FD curve segment to be pressed or re-
leased, and merging multiple FD curves into an FDVV model.

Prototyping Innovative Buttons
Our setup enables prototyping innovative and extraordinary
buttons that go beyond commodity designs. We give five
examples here. The first two are instances of FDVV models,
while the remaining are buttons that can be run on the simulator
but can not be expressed as FDVV models.

1. A fast tapping button: While humans can only reach about
four presses per second in tapping tasks [56], we can increase
this capacity via a novel button design. The principle is this:

a bDisplacement (mm)

Figure 15. The button-editing tool: (a) The design tool allows the de-
signer to freely create and edit low-parametric FDV models. (B) An
edited model can be processed and then simulated via the simulator.

a b cDisplacement (mm)

Figure 16. Three innovative button designs realized with our setup: (a)
a button for very fast tapping, (b) a non-Newtonian-fluid button, and (c)
a multi-level button.

once a press is detected, the button drops to the bottom and
returns automatically. This can be especially useful for content
requiring high-frequency rhythmic tapping, such as music
games (see Figure 16 (a)). One of the authors reached 8
presses per second with this button.

2. A non-Newtonian-fluid button: In non-Newtonian fluids,
viscosity changes under force: the medium becomes either
more liquid or more solid. We can design a button that adjusts
its stiffness following pressing velocity; see Figure 16 (b). As
a result, the button is softer when being pressed gently, but the
resisting force increases during fast pressing. This design can
be used to prevent accidental touches.

3. A multi-level button: We can extend the input modality of a
button by giving multi-level haptic feedback. For example, a
typical 4 mm button can be divided into several depth ranges.
Through the provision of distinguishable haptic signals, a user
can effectively activate different functions of the button by
pressing down to different depths; see Figure 16 (c). This can
be useful for easier use of single-button devices (e.g., in tuning
the luminance of a lamp).

4. Vibration cues: We can deliver rich temporal information
through continuous vibrotactile cues while the press is at the
bottom. This interaction can enhance the effectiveness and
efficiency of dwell-press applications [36]. For instance, when
the shutter button of a camera is pressed and the camera is
continuously shooting, vibration ticks can help the user easily
count the number of shots via humans’ haptic sense.

5. A dynamically returning button: In certain situations, it
might be desirable to avoid fast repetition with a given button.
In the example of fighting games or shooting games, many
attacks involve a cooldown time – i.e., a minimum duration
before the next use of the relevant ability. Our simulator can
easily render buttons with just such dynamic returning time,
as demanded by the game content.

CONCLUSION
We have shown that the FDVV approach proposed as an ex-
tension to the dominant FD model increases the scope and
perceived realism of button simulations. While this extension
was motivated by prior literature, several engineering problems
were solved to capture and simulate FDVV models. The added
complexity notwithstanding, the core model is understandable
and offers practitioners a workable starting point. We have
demonstrated the benefit of model–simulator separation via
three applications: human-in-the-loop button optimization, in-
teractive button design, and examples of innovative buttons
that would be tricky to realize without this approach.

While the FDVV approach permits greater realism, and opens
many new practical possibilities, our results point also to clear
opportunities for further improving realism. Firstly, the itera-
tive compensation method can be enhanced, to better capture
the dynamic effects of damping on the actuation signals. Our
approach was to try to cancel the effect of the transfer func-
tion, but future research could consider learning a data-driven
model of the black box through machine learning. This should
be coupled with a clever controller design. Secondly, struc-
tural vibration can be modeled better. We opted to measure the
snap-like vibration as a sound wave, but sometimes this was
inadequate to reproduce the felt sensation of the tactile bump.
To enhance the realism of the snap point, researchers could
consider applying better measurement, modeling and control-
ling methods for handling the vibration [48, 51]. This would
eliminate the human-dependent part of the vibration model-
ing. While these changes would increase realism, perfect
button simulation entails simulating the texture and shape of
the keycap, the sound emitted, etc. Finally, once a button has
been designed and tested, a suitable electromechanical design
should be fabricated. This presents an interesting challenge
for future work aimed at bridging the gap between buttons in
vitro and buttons in vivo.

OPEN SCIENCE
The materials and data in this paper are released on our project
page at http://userinterfaces.aalto.fi/button-design. The
materials include 3D models, circuit design, component spec-
ifications, construction details of the simulator, and the pro-
grams for controllers. The cost for the simulator construction
is about $550. From capturing a button to simulation via
our pipeline takes about an hour (5 minutes for capturing, 30
minutes for data preprocessing and FDVV modeling, and 30
minutes for iterative compensation and simulation). All the
data for button measurements and experiments are released
too. The materials also complement Figure 1 and Figure 8
with the graphs of other buttons.

ACKNOWLEDGEMENT
This work has been funded by the European Research Council
(ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No 637991)
and by Korea Creative Content Agency (grant agreement No
R2019020010).

http://userinterfaces.aalto.fi/button-design

REFERENCES
[1] Victoria. E. Abraira and David. D. Ginty. 2013. The

Sensory Neurons of Touch. Neuron 79, 4 (2013), 618 –
639. DOI:
http://dx.doi.org/10.1016/j.neuron.2013.07.051

[2] Kenichi Akagi. 1992. A Computer Keyboard Key Feel
Study in Performance and Preference. Proceedings of
the Human Factors and Ergonomics Society Annual
Meeting 36, 5 (1992), 523–527. DOI:
http://dx.doi.org/10.1177/154193129203600511

[3] B. Allotta, V. Colla, and G. Bioli. 1999. A mechatronic
device for simulating push-buttons and knobs. In
Proceedings IEEE International Conference on
Multimedia Computing and Systems, Vol. 1. 636–642
vol.1. DOI:http://dx.doi.org/10.1109/MMCS.1999.779274

[4] M. Angerilli, A. Frisoli, F. Salsedo, S. Marcheschi, and
M. Bergamasco. 2001. Haptic simulation of an
automotive manual gearshift. In Proceedings 10th IEEE
International Workshop on Robot and Human
Interactive Communication. ROMAN 2001 (Cat.
No.01TH8591). 170–175. DOI:
http://dx.doi.org/10.1109/ROMAN.2001.981897

[5] Jonathan Becedas, Gabriela Mamani, Vicente Feliu, and
Hebertt Sira-Ramírez. 2009. Estimation of
Mass-Spring-Dumper Systems. Springer Netherlands,
Dordrecht, 411–422. DOI:
http://dx.doi.org/10.1007/978-1-4020-8919-0_28

[6] Jonathan Becedas, Gabriela Mamani, Vicente
Feliu-Batlle, and Hebertt Sira-Ramírez. 2007. Algebraic
Identification Method for Mass-Spring-Damper System.

[7] Ingvars Birznieks, Per Jenmalm, Antony W. Goodwin,
and Roland S. Johansson. 2001. Encoding of Direction
of Fingertip Forces by Human Tactile Afferents. Journal
of Neuroscience 21, 20 (2001), 8222–8237. DOI:
http://dx.doi.org/10.1523/JNEUROSCI.21-20-08222.2001

[8] Stephen P. Boyd and Craig H. Barratt. 1991. Linear
Controller Design: Limits of Performance. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA.

[9] Andy Clark. 2013. Whatever next? Predictive brains,
situated agents, and the future of cognitive science.
Behavioral and Brain Sciences 36, 3 (2013), 181–204.
DOI:http://dx.doi.org/10.1017/S0140525X12000477

[10] David Clark. 1982. High-Resolution Subjective Testing
Using a Double-Blind Comparator. J. Audio Eng. Soc 30,
5 (1982), 330–338.
http://www.aes.org/e-lib/browse.cfm?elib=3839

[11] M. B. Colton and J. M. Hollerbach. 2005. Identification
of nonlinear passive devices for haptic simulations. In
First Joint Eurohaptics Conference and Symposium on
Haptic Interfaces for Virtual Environment and
Teleoperator Systems. World Haptics Conference.
363–368. DOI:http://dx.doi.org/10.1109/WHC.2005.77

[12] Matthew J. C. Crump and Gordon D. Logan. 2010.
Warning: This keyboard will deconstruct— The role of

the keyboard in skilled typewriting. Psychonomic
Bulletin & Review 17, 3 (01 Jun 2010), 394–399. DOI:
http://dx.doi.org/10.3758/PBR.17.3.394

[13] R. S. Dahiya, G. Metta, M. Valle, and G. Sandini. 2010.
Tactile Sensing—From Humans to Humanoids. IEEE
Transactions on Robotics 26, 1 (Feb 2010), 1–20. DOI:
http://dx.doi.org/10.1109/TRO.2009.2033627

[14] C. Doerrer and R. Werthschuetzky. 2002. Simulating
Push-Buttons Using a Haptic Display: Requirements on
Force Resolution and Force-Displacement Curve.
(2002).

[15] K. FUJITA. 2001. A New Softness Display Interface by
Dynamic Fingertip Contact Area Control. 5th World
Multiconference on Systemics, Cybernetics and
Informatics, 2001 (2001), 78–82.
https://ci.nii.ac.jp/naid/10031028472/en/

[16] Nico Galoppo, Serhat Tekin, Miguel A. Otaduy, Markus
Gross, and Ming C. Lin. 2007. Interactive Haptic
Rendering of High-Resolution Deformable Objects. In
Virtual Reality, Randall Shumaker (Ed.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 215–223.

[17] T. Hachisu, G. Cirio, M. Marchal, A. Lécuyer, and H.
Kajimoto. 2011. Pseudo-haptic feedback augmented
with visual and tactile vibrations. In 2011 IEEE
International Symposium on VR Innovation. 327–328.
DOI:http://dx.doi.org/10.1109/ISVRI.2011.5759662

[18] T. Hachisu and H. Kajimoto. 2017. Vibration Feedback
Latency Affects Material Perception During Rod
Tapping Interactions. IEEE Transactions on Haptics 10,
2 (April 2017), 288–295. DOI:
http://dx.doi.org/10.1109/TOH.2016.2628900

[19] Vincent Hayward and Brian Armstrong. 2000. A new
computational model of friction applied to haptic
rendering. In Experimental Robotics VI. Springer
London, London, 403–412.

[20] Robert D. Howe and Mark R. Cutkosky. 1989. Sensing
skin acceleration for slip and texture perception.
Proceedings, 1989 International Conference on
Robotics and Automation (1989), 145–150 vol.1.

[21] Yoshiaki Ikeda and Kinya Fujita. 2004. Display of Soft
Elastic Object by Simultaneous Control of Fingertip
Contact Area and Reaction Force. Transactions of the
Virtual Reality Society of Japan 9, 2 (2004), 187–194.
DOI:http://dx.doi.org/10.18974/tvrsj.9.2_187

[22] Devin L Jindrich, Aruna D Balakrishnan, and Jack T
Dennerlein. 2004. Effects of keyswitch design and finger
posture on finger joint kinematics and dynamics during
tapping on computer keyswitches. Clinical
Biomechanics 19, 6 (2004), 600 – 608. DOI:
http://dx.doi.org/https:

//doi.org/10.1016/j.clinbiomech.2004.03.003

[23] Hiroyuki Kajimoto, Naoki Kawakami, Taro Maeda, and
Susumu Tachi. 2001. Electro-Tactile Display with Force
Feedback.

http://dx.doi.org/10.1016/j.neuron.2013.07.051
http://dx.doi.org/10.1177/154193129203600511
http://dx.doi.org/10.1109/MMCS.1999.779274
http://dx.doi.org/10.1109/ROMAN.2001.981897
http://dx.doi.org/10.1007/978-1-4020-8919-0_28
http://dx.doi.org/10.1523/JNEUROSCI.21-20-08222.2001
http://dx.doi.org/10.1017/S0140525X12000477
http://www.aes.org/e-lib/browse.cfm?elib=3839
http://dx.doi.org/10.1109/WHC.2005.77
http://dx.doi.org/10.3758/PBR.17.3.394
http://dx.doi.org/10.1109/TRO.2009.2033627
https://ci.nii.ac.jp/naid/10031028472/en/
http://dx.doi.org/10.1109/ISVRI.2011.5759662
http://dx.doi.org/10.1109/TOH.2016.2628900
http://dx.doi.org/10.18974/tvrsj.9.2_187
http://dx.doi.org/https://doi.org/10.1016/j.clinbiomech.2004.03.003
http://dx.doi.org/https://doi.org/10.1016/j.clinbiomech.2004.03.003

[24] Krueger L. (Ed.) Krueger L. (Ed.) Katz, D. 1989. The
World of Touch. New York: Psychology Press. DOI:http:
//dx.doi.org/https://doi.org/10.4324/9780203771976

[25] Johan Kildal. 2010. 3D-press: Haptic Illusion of
Compliance when Pressing on a Rigid Surface. In
International Conference on Multimodal Interfaces and
the Workshop on Machine Learning for Multimodal
Interaction (ICMI-MLMI ’10). ACM, New York, NY,
USA, Article 21, 8 pages. DOI:
http://dx.doi.org/10.1145/1891903.1891931

[26] Jeong Ho Kim, Lovenoor Aulck, Michael C. Bartha,
Christy A. Harper, and Peter W. Johnson. 2014a.
Differences in typing forces, muscle activity, comfort,
and typing performance among virtual, notebook, and
desktop keyboards. Applied Ergonomics 45, 6 (2014),
1406 – 1413. DOI:http://dx.doi.org/https:
//doi.org/10.1016/j.apergo.2014.04.001

[27] Jeong Ho Kim, Lovenoor S. Aulck, Michael C. Bartha,
Christy A. Harper, and Peter W. Johnson. 2014b.
Differences in typing forces, muscle activity, comfort,
and typing performance among virtual, notebook, and
desktop keyboards. Applied ergonomics 45 6 (2014),
1406–13.

[28] Sunjun Kim, Byungjoo Lee, and Antti Oulasvirta. 2018.
Impact Activation Improves Rapid Button Pressing. In
Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems (CHI ’18). ACM, New
York, NY, USA, Article 571, 8 pages. DOI:
http://dx.doi.org/10.1145/3173574.3174145

[29] Sunjun Kim and Geehyuk Lee. 2013. Haptic Feedback
Design for a Virtual Button Along Force-displacement
Curves. In Proceedings of the 26th Annual ACM
Symposium on User Interface Software and Technology
(UIST ’13). ACM, New York, NY, USA, 91–96. DOI:
http://dx.doi.org/10.1145/2501988.2502041

[30] Sunjun Kim, Jeongmin Son, Geehyuk Lee, Hwan Kim,
and Woohun Lee. 2013. TapBoard: Making a Touch
Screen Keyboard More Touchable. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (CHI ’13). ACM, New York, NY, USA,
553–562. DOI:
http://dx.doi.org/10.1145/2470654.2470733

[31] Sadanori Konishi and Genshiro Kitagawa. 2007.
Information Criteria and Statistical Modeling (1st ed.).
Springer Publishing Company, Incorporated.

[32] K. J. Kuchenbecker, J. Fiene, and G. Niemeyer. 2006.
Improving contact realism through event-based haptic
feedback. IEEE Transactions on Visualization and
Computer Graphics 12, 2 (March 2006), 219–230. DOI:
http://dx.doi.org/10.1109/TVCG.2006.32

[33] Byungjoo Lee, Sunjun Kim, Antti Oulasvirta, Jong-In
Lee, and Eunji Park. 2018. Moving Target Selection: A
Cue Integration Model. In Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems
(CHI ’18). ACM, New York, NY, USA, Article 230, 12
pages. DOI:http://dx.doi.org/10.1145/3173574.3173804

[34] Byungjoo Lee and Antti Oulasvirta. 2016. Modelling
Error Rates in Temporal Pointing. In Proceedings of the
2016 CHI Conference on Human Factors in Computing
Systems (CHI ’16). ACM, New York, NY, USA,
1857–1868. DOI:
http://dx.doi.org/10.1145/2858036.2858143

[35] James R Lewis, Kathleen M Potosnak, and Regis L
Magyar. 1997. Keys and keyboards. In Handbook of
human-computer interaction. Elsevier, 1285–1315.

[36] Yi-Chi Liao, Yen-Chiu Chen, Liwei Chan, and Bing-Yu
Chen. 2017. Dwell+: Multi-Level Mode Selection Using
Vibrotactile Cues. In Proceedings of the 30th Annual
ACM Symposium on User Interface Software and
Technology (UIST ’17). ACM, New York, NY, USA,
5–16. DOI:http://dx.doi.org/10.1145/3126594.3126627

[37] Yi-Chi Liao, Sunjun Kim, and Antti Oulasvirta. 2018.
One Button to Rule Them All: Rendering Arbitrary
Force-Displacement Curves. In The 31st Annual ACM
Symposium on User Interface Software and Technology
Adjunct Proceedings (UIST ’18 Adjunct). ACM, New
York, NY, USA, 111–113. DOI:
http://dx.doi.org/10.1145/3266037.3266118

[38] Karon E. MacLean and William K. Durfee. 1995.
Apparatus to study the emulation of haptic feedback. In
ASME Dynamic Systems and Control Division, Vol. 57-2.
ASME, 615–621.

[39] Karon E. MacLean. 1996. The”Haptic Camera”: a
technique for characterizing and playing back haptic
properties of real envi.

[40] Richard W. Marklin and Mark L. Nagurka. 2000.
Measurement of Stiffness and Damping Characateristics
of Computer Keyboard Keys. Proceedings of the Human
Factors and Ergonomics Society Annual Meeting 44, 6
(2000), 678–681. DOI:
http://dx.doi.org/10.1177/154193120004400637

[41] Thomas H. Massie and J. K. Salisbury. 1994. The
PHANToM haptic interface: A device for probing
virtual objects. In Proceedings of the ASME Dynamic
Systems and Control Division. 295–301.

[42] Carr B. Carr B. Meilgaard, M. 2007. Sensory Evaluation
Techniques (4th edition ed.). Boca Raton: CRC Press.
DOI:http://dx.doi.org/https://doi.org/10.1201/b16452

[43] Leonard Meirovitch. 1997. Principles and techniques of
vibrations. Vol. 1. Prentice Hall New Jersey.

[44] G. Moy, C. Wagner, and R. S. Fearing. 2000. A
compliant tactile display for teletaction. In Proceedings
2000 ICRA. Millennium Conference. IEEE International
Conference on Robotics and Automation. Symposia
Proceedings (Cat. No.00CH37065), Vol. 4. 3409–3415
vol.4. DOI:
http://dx.doi.org/10.1109/ROBOT.2000.845247

http://dx.doi.org/https://doi.org/10.4324/9780203771976
http://dx.doi.org/https://doi.org/10.4324/9780203771976
http://dx.doi.org/10.1145/1891903.1891931
http://dx.doi.org/https://doi.org/10.1016/j.apergo.2014.04.001
http://dx.doi.org/https://doi.org/10.1016/j.apergo.2014.04.001
http://dx.doi.org/10.1145/3173574.3174145
http://dx.doi.org/10.1145/2501988.2502041
http://dx.doi.org/10.1145/2470654.2470733
http://dx.doi.org/10.1109/TVCG.2006.32
http://dx.doi.org/10.1145/3173574.3173804
http://dx.doi.org/10.1145/2858036.2858143
http://dx.doi.org/10.1145/3126594.3126627
http://dx.doi.org/10.1145/3266037.3266118
http://dx.doi.org/10.1177/154193120004400637
http://dx.doi.org/https://doi.org/10.1201/b16452
http://dx.doi.org/10.1109/ROBOT.2000.845247

[45] W. A. Munson and Mark B. Gardner. 1950.
Standardizing Auditory Tests. The Journal of the
Acoustical Society of America 22, 5 (1950), 675–675.
DOI:http://dx.doi.org/10.1121/1.1917190

[46] Ken Nakagaki, Daniel Fitzgerald, Zhiyao (John) Ma,
Luke Vink, Daniel Levine, and Hiroshi Ishii. 2019.
inFORCE: Bi-directional ‘Force’ Shape Display for
Haptic Interaction. In Proceedings of the Thirteenth
International Conference on Tangible, Embedded, and
Embodied Interaction (TEI ’19). ACM, New York, NY,
USA, 615–623. DOI:
http://dx.doi.org/10.1145/3294109.3295621

[47] Daichi Ogawa, Vibol Yem, Taku Hachisu, and Hiroyuki
Kajimoto. 2015. Multiple Texture Button by Adding
Haptic Vibration and Displacement Sensing to the
Physical Button. In SIGGRAPH Asia 2015 Haptic
Media And Contents Design (SA ’15). ACM, New York,
NY, USA, Article 12, 2 pages. DOI:
http://dx.doi.org/10.1145/2818384.2818394

[48] A. M. Okamura, M. R. Cutkosky, and J. T. Dennerlein.
2001. Reality-based models for vibration feedback in
virtual environments. IEEE/ASME Transactions on
Mechatronics 6, 3 (Sep. 2001), 245–252. DOI:
http://dx.doi.org/10.1109/3516.951362

[49] Antti Oulasvirta, Sunjun Kim, and Byungjoo Lee. 2018.
Neuromechanics of a Button Press. In Proceedings of
the 2018 CHI Conference on Human Factors in
Computing Systems (CHI ’18). ACM, New York, NY,
USA, Article 508, 13 pages. DOI:
http://dx.doi.org/10.1145/3173574.3174082

[50] Dinesh K. Pai, Austin Rothwell, Pearson Wyder-Hodge,
Alistair Wick, Ye Fan, Egor Larionov, Darcy Harrison,
Debanga Raj Neog, and Cole Shing. 2018. The Human
Touch: Measuring Contact with Real Human Soft
Tissues. ACM Trans. Graph. 37, 4, Article 58 (July
2018), 12 pages. DOI:
http://dx.doi.org/10.1145/3197517.3201296

[51] Gunhyuk Park and Seungmoon Choi. 2018. PhysVib:
Physically Plausible Vibrotactile Feedback Library to
Collisions on a Mobile Device. In Haptic Interaction,
Shoichi Hasegawa, Masashi Konyo, Ki-Uk Kyung,
Takuya Nojima, and Hiroyuki Kajimoto (Eds.). Springer
Singapore, Singapore, 409–413.

[52] Gunhyuk Park, Seungmoon Choi, Kyunghun Hwang,
Sunwook Kim, Jaecheon Sa, and Moonchae Joung.
2011. Tactile Effect Design and Evaluation for Virtual
Buttons on a Mobile Device Touchscreen. In
Proceedings of the 13th International Conference on
Human Computer Interaction with Mobile Devices and
Services (MobileHCI ’11). Association for Computing
Machinery, New York, NY, USA, 11–20. DOI:
http://dx.doi.org/10.1145/2037373.2037376

[53] David Posada and Thomas R. Buckley. 2004. Model
Selection and Model Averaging in Phylogenetics:
Advantages of Akaike Information Criterion and
Bayesian Approaches Over Likelihood Ratio Tests.
Systematic Biology 53, 5 (10 2004), 793–808. DOI:
http://dx.doi.org/10.1080/10635150490522304

[54] Robert G. Radwin and One-Jang Jeng. 1997. Activation
Force and Travel effects on Overexertion in Repetitive
Key Tapping. Human Factors 39, 1 (1997), 130–140.
DOI:http://dx.doi.org/10.1518/001872097778940605
PMID: 9302885.

[55] David Rempel, Elaine Serina, Edward Klinenberg,
Bernard J. Martin, Thomas J. Armstrong, James A.
Foulke, and Sivakumaran Natarajan. 1997. The effect of
keyboard keyswitch make force on applied force and
finger flexor muscle activity. Ergonomics 40, 8 (1997),
800–808. DOI:
http://dx.doi.org/10.1080/001401397187793 PMID:
9336104.

[56] Bruno H. Repp. 2005. Sensorimotor synchronization: A
review of the tapping literature. Psychonomic Bulletin &
Review 12, 6 (01 Dec 2005), 969–992. DOI:
http://dx.doi.org/10.3758/BF03206433

[57] Yann Roudaut, Aurélie Lonigro, Bertrand Coste, Jizhe
Hao, Patrick Delmas, and Marcel Crest. 2012. Touch
sense. Channels 6, 4 (2012), 234–245. DOI:
http://dx.doi.org/10.4161/chan.22213 PMID:
23146937.

[58] J. K. Salisbury and M. A. Srinivasan. 1997.
Phantom-based haptic interaction with virtual objects.
IEEE Computer Graphics and Applications 17, 5 (Sep.
1997), 6–10. DOI:
http://dx.doi.org/10.1109/MCG.1997.1626171

[59] Robert A. Scheidt, Michael A. Conditt, Emanuele L.
Secco, and Ferdinando A. Mussa-Ivaldi. 2005.
Interaction of Visual and Proprioceptive Feedback
During Adaptation of Human Reaching Movements.
Journal of Neurophysiology 93, 6 (2005), 3200–3213.
DOI:http://dx.doi.org/10.1152/jn.00947.2004 PMID:
15659526.

[60] E. P. Scilingo, M. Bianchi, G. Grioli, and A. Bicchi.
2010. Rendering Softness: Integration of Kinesthetic
and Cutaneous Information in a Haptic Device. IEEE
Transactions on Haptics 3, 2 (April 2010), 109–118.
DOI:http://dx.doi.org/10.1109/TOH.2010.2

[61] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P
Adams, and Nando De Freitas. 2015. Taking the human
out of the loop: A review of Bayesian optimization.
Proc. IEEE 104, 1 (2015), 148–175.

[62] Aiguo Song, Jia Liu, and Juan Wu. 2008. Softness
Haptic Display Device for Human- Computer
Interaction. In Human Computer Interaction, Ioannis
Pavlidis (Ed.). IntechOpen, Rijeka, Chapter 16. DOI:
http://dx.doi.org/10.5772/6299

[63] Paul Strohmeier and Kasper Hornbæk. 2017. Generating
Haptic Textures with a Vibrotactile Actuator. In
Proceedings of the 2017 CHI Conference on Human
Factors in Computing Systems (CHI ’17). ACM, New
York, NY, USA, 4994–5005. DOI:
http://dx.doi.org/10.1145/3025453.3025812

http://dx.doi.org/10.1121/1.1917190
http://dx.doi.org/10.1145/3294109.3295621
http://dx.doi.org/10.1145/2818384.2818394
http://dx.doi.org/10.1109/3516.951362
http://dx.doi.org/10.1145/3173574.3174082
http://dx.doi.org/10.1145/3197517.3201296
http://dx.doi.org/10.1145/2037373.2037376
http://dx.doi.org/10.1080/10635150490522304
http://dx.doi.org/10.1518/001872097778940605
http://dx.doi.org/10.1080/001401397187793
http://dx.doi.org/10.3758/BF03206433
http://dx.doi.org/10.4161/chan.22213
http://dx.doi.org/10.1109/MCG.1997.1626171
http://dx.doi.org/10.1152/jn.00947.2004
http://dx.doi.org/10.1109/TOH.2010.2
http://dx.doi.org/10.5772/6299
http://dx.doi.org/10.1145/3025453.3025812

[64] Seiya Takei, Ryo Watanabe, Ryuta Okazaki, Taku
Hachisu, and Hiroyuki Kajimoto. 2015. Presentation of
Softness Using Film-Type Electro-Tactile Display and
Pressure Distribution Measurement. Springer Japan,
Tokyo, 91–96. DOI:
http://dx.doi.org/10.1007/978-4-431-55690-9_17

[65] A. B. Vallbo and Roland Johansson. 1999. Properties of
cutaneous mechanoreceptors in the human hand-related
to touch sensation.

[66] Wenping Wang, Helmut Pottmann, and Yang Liu. 2006.
Fitting B-spline Curves to Point Clouds by
Curvature-based Squared Distance Minimization. ACM
Trans. Graph. 25, 2 (April 2006), 214–238. DOI:
http://dx.doi.org/10.1145/1138450.1138453

[67] D. W. Weir, M. Peshkin, J. E. Colgate, P. Buttolo, J.
Rankin, and M. Johnston. 2004. The haptic profile:
capturing the feel of switches. In 12th International
Symposium on Haptic Interfaces for Virtual Environment
and Teleoperator Systems, 2004. HAPTICS ’04.
Proceedings. 186–193. DOI:
http://dx.doi.org/10.1109/HAPTIC.2004.1287195

[68] Parris S. Wellman and Robert D. Howe. 1995. Towards
Realistic Vibrotactile Display In Virtual Environments.

[69] K.J. Åström and T. Hägglund. 2001. The future of PID
control. Control Engineering Practice 9, 11 (2001),
1163 – 1175. DOI:http://dx.doi.org/https:
//doi.org/10.1016/S0967-0661(01)00062-4

http://dx.doi.org/10.1007/978-4-431-55690-9_17
http://dx.doi.org/10.1145/1138450.1138453
http://dx.doi.org/10.1109/HAPTIC.2004.1287195
http://dx.doi.org/https://doi.org/10.1016/S0967-0661(01)00062-4
http://dx.doi.org/https://doi.org/10.1016/S0967-0661(01)00062-4

	Introduction
	Background
	Capturing and modeling physical buttons
	Haptics rendering
	Button simulators

	Button Capture
	FDVV Modeling
	Preprocessing
	B-Spline Fitting

	Button Simulator
	Spatial and temporal accuracy
	Simulation procedure

	Iterative Compensation
	Optional human-in-the-loop vibration tuning

	A User Study: Perceived Realism
	Method
	Results

	Applications
	Human-in-the-loop button optimization
	Interactive button design
	Prototyping Innovative Buttons

	Conclusion
	Open Science
	Acknowledgement
	References

